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Abstract

We present a reformulation of the Bristow±Campbell model for daily solar radiation, developed using daily observations of

radiation, temperature, humidity, and precipitation, from 40 stations in contrasting climates. By expanding the original model

to include a spatially and temporally variable estimate of clear-sky transmittance, and applying a small number of other minor

modi®cations, the new model produces better results than the original over a wider range of climates. Our method does not

require reparameterization on a site-by-site basis, a distinct advantage over the original approach. We do require observations

of dewpoint temperature, which the original model does not, but we suggest a method that could eliminate this dependency.

Mean absolute error (MAE) for predictions of clear-sky transmittance was improved by 28% compared to the original model

formulation. Aerosols and snowcover probably contribute to variation in clear-sky transmittance that remains unexplained by

our method. MAE and bias for prediction of daily incident radiation were about 2.4 MJ mÿ2 dayÿ1 and �0.5 MJ mÿ2 dayÿ1,

respectively. As a percent of the average observed values of incident radiation, MAE and bias are about 15% and �4%,

respectively. The lowest errors and smallest biases (percent basis) occurred during the summer. The highest prediction biases

were associated with stations having a strong seasonal concentration of precipitation, with underpredictions at summer-

precipitation stations, and overpredictions at winter-precipitation stations. Further study is required to characterize the

behavior of this method for tropical climates. # 1999 Elsevier Science B.V. All rights reserved.

Keywords: Solar radiation; Atmospheric transmittance; Daily; Air temperature; Humidity; Snowcover; Ecosystem process simulation

1. Introduction

A lack of short-wave radiation observations has

been a persistent problem in studies of land-surface

processes. The number of surface weather stations

recording daily radiation is very small compared to the

number recording temperature and precipitation. In

the United States, to take a best-case example, the

ratio between stations observing radiation and those

observing temperature is no better than 1:100 (NREL,

1993; NCDC, 1995), and globally the ratio may be as

low as 1:500. The need for a general method for

estimating incident radiation from commonly avail-

able inputs has grown as the spatial scope of research

into land-surface processes has expanded from local,

to regional, continental, and global scales.

Geostationary satellites can provide estimates of

incident radiation over large regions, and while studies
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have demonstrated the utility of these methods for

daily predictions over areas as small as 150 km2

(Kustas et al., 1994), they have been tested mostly

for monthly estimation over large areas (18 by 18 or

larger grid-cells, Pinker et al., 1995). Regardless of the

accuracy of these methods, they have limited utility in

the construction of historical databases.

Bristow and Campbell (1984) (hereafter denoted

B&C) demonstrated that a relationship exists between

the diurnal range in near-surface air temperature and

the daily total solar radiation incident at the surface.

They developed and tested their method (hereafter

denoted M1) using data from three stations in the

northwestern United States and showed that it pro-

vided accurate and relatively unbiased estimates of

daily total radiation at these locations. They also noted

that a more comprehensive study covering a wider

range of climates would be required to test the general

applicability of the method. M1 has been used in

numerous other studies (Running et al., 1987; Glassy

and Running, 1994; Thornton et al., 1997), but a more

exhaustive test using data from diverse climates has

not been published.

The demand for land-surface radiation estimates is

demonstrated by several recent research efforts.

VEMAP (Vegetation/ecosystem modeling and analy-

sis project) (Kittel et al., 1995; VEMAP Members,

1995), an ongoing intercomparison of land-surface

process simulation models, used a variant of M1 to

generate daily radiation values for 1 year on a 0.58
longitude/latitude grid over the conterminous U.S. A

second phase of the project has expanded that applica-

tion to cover a 99-year period, using historical obser-

vations of temperature and precipitation, and again

incorporating a variant of M1 to arrive at estimates of

daily incident radiation (Kittel et al., 1997). Hunt et al.

(1996), in a study relating globally distributed point

observations of atmospheric CO2 concentration to

simulated distributions of carbon sources and sinks,

used a variant of M1 driven by gridded temperature

and precipitation data (Piper, 1995) to produce a

global 18 longitude/latitude grid of radiation values

for a single year. A reassessment of M1 using

observations from an expanded range of climates

could bene®t such studies by documenting model

performance under different climates, and by pro-

viding a general and objective parameterization

scheme.

Here we pursue a re®nement of M1, using meteor-

ological observations from the Solar and Meteorolo-

gical Surface Observation Network (SAMSON)

database (NREL, 1993). The SAMSON database

includes hourly observations of radiation, tempera-

ture, humidity, and precipitation from stations in the

United States with tropical, subtropical, warm-tempe-

rate, and cold-temperate climates. Our goal is a para-

meterization scheme that gives accurate results at

stations with different climates without re®tting model

parameters on a case-by-case basis. We retain the

general logic of M1, expanding it in some respects

for the sake of improved accuracy, and extending the

range of climates over which it gives useful predic-

tions of daily total incident radiation.

2. Methods

2.1. Database generation

All data used are from the SAMSON database.

SAMSON includes both observed and modeled hourly

radiation values. We extracted hourly data for the

period 1961±1990 for all stations with observed radia-

tion values (the SAMSON ®rst-order stations). For

each hourly period we retrieved the following para-

meters: hourly potential radiation (Rpot,h), hourly glo-

bal horizontal radiation, hourly dry bulb temperature,

hourly dewpoint temperature, and hourly accumulated

precipitation. Quality control ¯ags for each parameter

were extracted, as were longitude, latitude, and eleva-

tion for each station.

The hourly database was processed to create a daily

database of: daily total potential radiation (Rpot,

MJ mÿ2 dayÿ1), daily total global horizontal radiation

(Rgh, MJ mÿ2 dayÿ1), daily maximum temperature

(Tmax, 8C), daily minimum temperature (Tmin, 8C),

daily average dewpoint temperature (Tdew, 8C), and

daily total precipitation (Q, mm dayÿ1). We elimi-

nated all station-days with missing or modeled hourly

radiation values for hours with Rpot,h > 0. Any station-

day with any of its hourly temperature or precipitation

data ¯agged as missing or corrupt in the original

database was also marked as missing for the appro-

priate parameter in the daily database. After ®ltering,

40 stations having greater than 100 daily observations

of Rgh remained (Table 1).
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2.2. Parameterization strategy

The expression proposed by B&C for predicting Rgh

uses a modeled estimate of daily total extraterrestrial

insolation on a horizontal surface (daily total potential

radiation, Rpot, MJ mÿ2 dayÿ1) which is reduced by a

linear scalar, the daily total transmittance (Tt, unitless)

Rgh � Tt � Rpot (1)

where Tt is estimated as a function of the diurnal range

Table 1

Summary data for included SAMSON stations

Station KoÈppen

climate

codea

Annual

mean Tair

(8C)

Annual total

precipitation

(cm)

Longitude

(8W)

Latitude

(8N)

Elevation

(m)

Albany, NY Df 8.6 91 73.80 42.75 89

Albuquerque, NM BS 13.3 22 106.62 35.05 1619

Bismarck, ND Df 5.6 39 100.75 46.77 502

Boise, ID BS 10.6 30 116.22 43.57 874

Boston, MA Cf 10.5 105 71.03 42.37 5

Boulder, CO Cf 10.0 46 105.25 40.02 1634

Brownsville, TX Cw 22.8 67 97.43 25.90 6

Burlington, VT Df 7.1 87 73.15 44.47 104

Cape Hatteras, NC Cf 16.8 142 75.55 35.27 2

Caribou, ME Df 4.1 92 68.02 46.87 190

Charleston, SC Cf 18.0 130 80.03 32.90 12

Columbia, MO Cf 12.2 102 92.22 38.82 270

Daytona Beach, FL Cf 21.0 121 81.05 29.18 12

Dodge City, KS Cf 12.5 54 99.97 37.77 787

El Paso, TX BW 17.6 22 106.40 31.80 1194

Ely, NV BS 7.0 25 114.85 39.28 1906

Eugene, OR Cs 11.2 125 123.22 44.12 109

Fresno, CA BS 17.2 27 119.72 36.77 100

Grand Junction, CO BS 11.4 22 108.53 39.12 1475

Great Falls, MT Df 7.3 38 111.37 47.48 1116

Lake Charles, LA Cf 19.5 139 93.22 30.12 3

Lander, WY Df 6.9 33 108.73 42.82 1696

Las Vegas, NV BW 19.4 10 115.17 36.08 664

Los Angeles, CA BS 16.7 31 118.40 33.93 32

Madison, WI Df 7.8 78 89.33 43.13 262

Medford, OR Cs 11.7 48 122.87 42.37 396

Miami, FL Aw 24.2 142 80.27 25.80 2

Midland, TX BS 17.0 38 102.20 31.93 871

Montgomery, AL Cf 17.9 135 86.40 32.30 62

Nashville, TN Cf 15.0 120 86.68 36.12 180

Omaha, NE Df 10.5 73 96.52 41.37 404

Phoenix, AZ BW 22.7 19 112.02 33.43 339

Pittsburgh, PA Df 10.2 93 80.22 40.50 373

Portland, OR Cs 11.8 92 122.60 45.60 12

Raleigh, NC Cf 14.8 104 78.78 35.87 134

Salt Lake City, UT Cf 11.1 41 111.97 40.77 1288

Santa Maria, CA Cs 13.5 31 120.45 34.90 72

Savannah, GA Cf 18.6 124 81.20 32.13 16

Seattle, WA Cs 10.9 93 122.30 47.45 122

Tallahassee, FL Cf 19.1 166 84.37 30.38 21

aFrom formulae in Koeppe and De Long (1958). Translation (number of stations in parentheses): Df (9) ± cold winter, all months moist;

Cf (14) ± mild winter, all months moist; Cs (5) ± mild winter, dry summer; Cw (1) ± mild dry winter; Aw (1) ± hot wet summer, dry winter; BS

(7) ± hot, semiarid; BW (3) ± hot, arid.
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in air temperature (�T � Tmax ÿ Tmin, 8C)

Tt � Tt;max 1ÿ exp ÿB ��TC
ÿ �ÿ �

(2)

Tt,max (denoted A in M1), B, and C are empirical

coef®cients. B&C included a 2-day averaging for Tmin

in their original formulation for �T in M1, but we

found better results without averaging. We assume

that methods to estimate Rpot are well-developed

(Garnier and Ohmura, 1968; Swift, 1976; Gates,

1980), and focus our efforts on developing methods

to estimate Tt,max, B, and C.

The parameter Tt,max in Eq. (2) is the asymptote of

Tt with increasing �T, and represents the potential

total transmittance on a given day (cloudless condi-

tions). In M1, this parameter is assumed constant in

time, but was assigned different values for each of the

three stations tested (0.70, 0.77, and 0.72, for Pullman,

WA, Great Falls, MT, and Seattle/Tacoma, WA,

respectively). M1 includes an explicit and objective

parameterization for B that makes it an exponentially

decaying function of the monthly average �T, and

assigns the parameter C a constant value of 2.4.

Here we ®rst consider the spatial and temporal

variation in daily total transmittance, in order to de®ne

an objective and physically meaningful parameteriza-

tion for Tt,max. We next consider the relationship

between �T and the daily total transmittance

expressed as a fraction of Tt,max, in order to develop

an objective parameterization for B and C. We then

describe objective methods for estimating the result-

ing model's prediction accuracy and its ®nal para-

meter values.

2.3. Parameterization of Tt,max

B&C note that Tt,max will vary with site elevation,

due to changes in the total atmospheric mass along the

beam path from the top of the atmosphere to the

surface. Ignoring changes in surface pressure due to

moving air masses, the variation with elevation can be

considered as constant in time for a given site and can

be represented by the expression

�z � �Pz=P0

0 (3)

where � z (unitless) is the instantaneous transmittance

corrected for elevation z, �0 (unitless) is the instanta-

neous transmittance at a reference elevation, Pz is the

surface air pressure at a station with elevation z, and P0

is the surface air pressure at the reference elevation

(Gates, 1980).

Through this same mechanism of varying optical

thickness, instantaneous transmittance can also be

described as a function of solar zenith angle (�), which

varies on average by latitude, but also at any latitude

by day of year, and, for a given latitude and day of

year, by solar time (Gates, 1980). Variations in instan-

taneous transmittance due to � (��, unitless) can be

expressed as

�� � �m�

nadir (4)

where �nadir (unitless) is the instantaneous cloudless-

sky transmittance at solar nadir (� � 0, sun directly

overhead), and m� (unitless) is the optical air mass for

a given �, de®ned as m� � 1/cos(�), with corrections

for � > 708, according to Gates (1980).

B&C also note that atmospheric water vapor has a

strong in¯uence on transmittance. In preliminary

assessments of the SAMSON database we observed

an apparent in¯uence of surface water vapor pressure

on the seasonal variation in Tt,max. A strong ordinal

relationship was apparent, with the highest observed

transmittances through the period of record for any

given yearday corresponding to relatively low water

vapor pressures. We propose the following simple

linear expression to account for this observation

�wet � �dry � �e (5)

where �wet is the instantaneous transmittance cor-

rected for the in¯uence of water vapor (unitless), �dry

is the instantaneous transmittance for a dry atmo-

sphere (unitless), e is the near-surface water vapor

pressure (Pa), and � is a slope parameter (Paÿ1)

describing the in¯uence of e on � .

Eqs. (3)±(5) can be combined in several different

ways to give an expression for the joint in¯uence of

elevation, �, and e on the instantaneous transmittance.

After some preliminary testing we chose the following

formulation for the combined effects

�z;�;wet � �0;nadir;dry

ÿ ��Pz=P0��m���e (6)

where � z,�,wet (unitless) is the instantaneous transmit-

tance at elevation z, zenith angle �, for a wet atmo-

sphere, and �0,nadir,dry is the instantaneous

transmittance (unitless) at the reference elevation, at

nadir, for a dry atmosphere.
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Eqs. (3)±(6) consider instantaneous transmittances

under clear-sky conditions, but M1 is concerned with

daily total transmittances. For a discrete-time numer-

ical method, and assuming that the vapor pressure (e)

is constant through the day, the daily total transmit-

tance for clear-sky conditions can be related to the

instantaneous clear-sky transmittance from Eq. (6) by

the expression

Tt;max �
Pss

s�sr Rpot;s � � �Pz=P0��m�

0;nadir;dryPss
s�sr Rpot;s

" #
� �e (7)

where Rpot,s is the instantaneous potential radiation at

solar time s, and sr and ss are the times of sunrise and

sunset, respectively. Eq. (7) represents a hypothesized

basis for estimating a subset of the observed values of

Tt: those occurring under clear-sky conditions.

To test this hypothesis, we extracted a subset of

observations intended to represent, for each station,

the seasonal course of the highest observed values of

Tt. For each station, we took the highest observed

values of Tt over the station's period of record for a

given yearday to represent the highest possible Tt at

that location on that yearday. This interpretation

assumes that there are enough years of record to obtain

a sample of Tt values at each yearday that includes at

least one cloudless day. To make this analysis less

sensitive to measurement error, we used a 7-day

window centered on the day in question, and deter-

mined Tt,max for that station-yearday by averaging the

three highest values of Tt with yeardays within the

window. These values of Tt,max are referred to below

as observed values, although we recognize that other

methods of analysis could result in different values.

Tt,max was assigned as missing for any station-day

with less than ten observations within the 7-day

window. The application of Eq. (7) requires observa-

tions of e, which we calculated from observations of

Tdew. Values of Tdew corresponding to each observed

Tt,max were derived by taking the three values of

daily average Tdew associated with the selected values

of Tt, and averaging to get a single value for each

yearday.

These methods are illustrated in Fig. 1. Top panels

show standard values of Rpot and observed values of

Rgh, plotted by day of year for two stations with

different climates. Temporal and spatial variation in

observed transmittance is more obvious in the middle

panels, where Rgh is transformed to Tt via Eq. (1). The

value of e corresponding to the observed value of

Tt,max is usually among the lowest values of e for that

yearday (bottom panels).

Fig. 1. Sample observations of daily radiation, transmittance, and vapor pressure (1961±1990), plotted against yearday, for two stations with

contrasting climates. A: points show observed Rgh, solid line shows Rpot. B: points show observed Tt, solid line shows Tt,max. C: points show

vapor pressure, solid line shows vapor pressure values associated with values of Tt,max in B.
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Assuming that Pz, P0, e, and the relationship

between � and s are known, two parameters from

Eq. (7) remain to be estimated; �0,nadir,dry and �.

We used numerical methods to ®nd parameter values

that minimized the mean absolute error (MAE)

between predicted and observed values of Tt,max.

(Pz/P0) was estimated for a standard atmosphere

(Irbane and Godson, 1981). Tdew observations were

used to calculate e following Abbott and Tabony

(1985). Standard geometric expressions were used

to estimate � as a function of latitude, day of year,

and solar time (e.g. Hungerford et al., 1989).

To test the effectiveness of Eq. (7) we carried out a

series of increasingly detailed parameterizations for

Tt,max, comparing results for signi®cant differences in

prediction error. First, we took the value of Tt,max to be

constant in space and time (CST), and set it as the

observed average of Tt,max over all stations for all

yeardays. Second, we took the value for Tt,max to be

constant in time (CT) for each station, and set it as the

observed average of Tt,max for the station. Third, we

took Tt,max to be constant in space (CS) on any given

yearday, and set it as the observed average of Tt,max

over all stations for that yearday. For these three tests a

numerical parameter selection process was not neces-

sary. Next, we tested the three separate components of

Eq. (7) independently. These three tests are referred to

below as (z), (�), and (e). The three possible combina-

tions of these three components taken two at a time

were tested next, using the ordering logic implicit in

Eq. (7). These three tests are referred to below as (z,�),
(z,e), and (�,e). The ®nal test was for all three com-

ponents taken together, as in Eq. (7).

Paired t-tests were performed on the absolute errors

for each station-day (n � 12205) between pairs of

methods. Methods with no signi®cant difference in

MAE (p > 0.005) were ranked together. The parame-

terization approach used for estimating Tt,max in the

rest of the study was determined by choosing the

approach with the lowest-ranking MAE, choosing

the simpler approach in the case of equal rankings.

2.4. Parameterization of B and C

We followed the logic of M1 in developing a more

general method for estimating B and C. One signi®-

cant departure of our analysis from M1 is due to the

spatial and temporal variability of Tt,max. In M1, Tt on

each day is predicted as a function of �T, but here,

instead of Tt, we predict the realized proportion of

Tt,max as a function of �T, calling this proportion

Tf,max:

Tf;max � Tt

Tt;max

(8)

Another departure from M1 is that we have de®ned a

minimum value for Tf,max. We set this minimum value

to 0.1 by examining values of Tf,max determined from

Eq. (8) using observed Tt from the SAMSON database

and predicted Tt,max from the previous section. Given

these changes, the revised expression involving the B

and C parameters is

Tf;max � 1:0ÿ 0:9 � exp ÿB ��TC
ÿ �

(9)

M1 includes a correction for wet days, and after

testing a number of different possibilities, we arrived

at a similar correction. On days with precipitation, the

value of Tf,max predicted from Eq. (9) was multiplied

by a constant factor to obtain the corrected prediction.

This correction in M1 was applied to observations of

�T, but we found that better results were obtained by

applying the correction to Tf,max. We tested a range of

multipliers, and found the best results with the multi-

plier set to 0.75. After this correction is applied to

Tf,max, the ®nal expression for estimated Rgh is

Rgh � Rpot � Tt;max � Tf;max (10)

In the original parameterization of M1 it was shown

that optimal values for B follow an exponentially

decreasing function of the monthly average value of

�T. We explored several alternative parameteriza-

tions, and found that this same basic parameterization

strategy applies to Eq. (9) and to the extended range of

climates represented in the SAMSON database. For

each station-day we calculated the average of �T for

that day and the previous 29 days (�T), correcting for

cases of missing temperature data. Grouping together

the observations from all stations and sorting by Rpot

and �T , we divided the observations into equal-sized

subsets. Taking each subset individually, we per-

formed a numerical optimization for B by selecting

a value that minimized the MAE for predictions of Rgh

from Eq. (10), comparing against the daily observa-

tions of Rgh from the SAMSON database. An expo-

nential curve was ®t to the set of points consisting of

the optimal values for B and the associated subset
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means of �T , using an automated numerical curve-

®tting procedure that minimized prediction error for

B. We found that the following three-parameter expo-

nential decay curve, including a y-axis offset para-

meter (b0), was more appropriate than the two-

parameter function used in M1

B � b0 � b1 � exp�ÿb2 ��T� (11)

The resulting empirical expression for the predic-

tion of B was then applied to the values of �T from the

entire dataset, followed by predictions of Rgh from

Eqs. (9) and (10), to generate an overall MAE. This

process of numerical optimization, curve ®tting, and

reassessment of MAE was carried out over a range of

values for C to ®nd the value which, when held

constant over space and time (as in M1), resulted in

the lowest overall MAE.

2.5. Cross-validation analysis

We used cross-validation to estimate bias and error

in the ®nal model predictions of Tt,max and Rgh. The

ability to objectively de®ne model parameters is a

prerequisite for an analysis of model bias and error

using cross-validation (Efron, 1983; Efron and Tib-

shirani, 1997). Given the somewhat subjective devel-

opment of model structure described in the previous

two sections, parameter values for the resulting model

were objectively determined by searching in discrete

steps through prescribed regions of the parameter

space to ®nd a local minimum MAE. The cross-

validation analysis proceeded by: (1) dropping one

station at a time out of the database; (2) using the data

from the remaining stations to objectively determine a

set of model parameters; (3) applying the resulting

model to predict Tt,max and Rgh for the withheld

station; (4) comparing those predictions with the

observed values to determine MAE and bias for the

withheld station; and (5) repeating from step (1),

returning the withheld station to the database and

dropping out a single other station, until all stations

had been withheld once.

Step (2) in this process consisted of a multi-way test

of parameter ranges that optimized parameter values

by minimizing pooled MAE across all observations

except those at the dropped station. The parameters

�0,nadir,dry and � were selected on the basis of mini-

mized MAE for predictions of Tt,max, according to

Eq. (7). Given these parameters, values for C and for

the coef®cients of Eq. (11) were selected to minimize

MAE for predictions of Rgh.

2.6. Final model formulation

We applied the objective parameterization proce-

dure just described for the entire set of observations

(all stations included) to produce the ®nal model

parameters.

3. Results and discussion

3.1. Parameterization of Tt,max

The (z,�,e) method, Eq. (7), had the lowest MAE,

signi®cantly lower than any of the other simpler

methods tested (Table 2). The CT method is essen-

tially the same logic employed by B&C for specifying

Tt,max, and it ranked third in these tests. The (z,�,e)

method represents a reduction in error of 28% from the

original M1 method, and a 44% reduction in error

from the CST method, employed in an early applica-

tion of M1 by Running et al. (1987). In addition to

providing better predictions, Eq. (7) has the great

advantage over these previous methods of not requir-

ing any radiation observations (or assumptions about

radiation conditions) at a new site. The physical basis

of the two required parameters suggests that their

optimal values should be largely independent of geo-

graphical location.

Most seasonal and geographic components of var-

iation in Tt,max are captured by Eq. (7), but some

Table 2

Comparison of various methods for predicting Tt,max

Method MAE Bias � � (Paÿ1) Rank

CST 0.0398 ± ± ± 7

CT 0.0307 ± ± ± 3

CS 0.0339 ± ± ± 4

(z) 0.0351 �0.0074 0.705 ± 5

(�) 0.0452 �0.0092 0.850 ± 9

(e) 0.0370 �0.0098 0.745 ÿ2.75e ÿ 5 6

(z,�) 0.0412 �0.0070 0.840 ± 8

(z,e) 0.0343 �0.0092 0.720 ÿ1.50e ÿ 5 4

(�,e) 0.0231 �0.0014 0.880 ÿ6.75e ÿ 5 2

(z,�,e) 0.0222 �0.0021 0.870 ÿ6.10e ÿ 5 1
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problems are apparent (Table 3, Fig. 2). Several sta-

tions have a strong positive prediction bias through

most of the year (Salt Lake City and Boulder, among

others). High aerosol concentrations may be respon-

sible for these offsets: both Salt Lake City and Boulder

are known to have signi®cant air pollution problems,

due to topographic settings that result in local inver-

sions. In addition to urban pollution, salt aerosols, dust

storms, and smoke from seasonal burning and wild®re

are also likely to have an in¯uence on transmittance at

various locations and times through the year. Another

possibility is that topographic elements block direct

Table 3

Results of cross-validation analysis for predictions of Tt,max and Rgh

Station Predictions of Tt,max Predictions of Rgh

n MAE

(Unitless)

Bias

(Unitless)

n MAE

(MJ mÿ2 dayÿ1)

Bias

(MJ mÿ2 dayÿ1)

MAE

(% of observed)

Bias

(% of observed)

Albany, NY 84 0.041 0.020 312 3.31 2.48 35.4 26.5

Albuquerque, NM 359 0.017 ÿ0.005 2825 1.95 ÿ0.36 9.6 ÿ1.8

Bismarck, ND 359 0.037 ÿ0.027 1633 2.19 0.80 14.8 5.4

Boise, ID 359 0.021 0.006 1509 2.00 1.06 12.4 6.6

Boston, MA 2 0.016 ÿ0.016 167 2.05 ÿ1.13 12.2 ÿ6.8

Boulder, CO 359 0.032 0.030 2401 3.09 2.30 19.7 14.7

Brownsville, TX 359 0.024 ÿ0.012 1802 2.89 0.35 17.2 2.1

Burlington, VT 333 0.031 0.023 985 2.68 1.63 19.6 11.9

Cape Hatteras, NC 16 0.018 ÿ0.013 208 3.49 ÿ3.24 18.1 ÿ16.8

Caribou, ME 234 0.047 0.015 557 2.78 1.73 22.2 13.8

Charleston, SC 164 0.015 ÿ0.010 458 1.64 ÿ0.93 8.6 ÿ4.9

Columbia, MO 359 0.019 ÿ0.015 740 2.48 0.80 14.9 4.8

Daytona Beach, FL 359 0.020 ÿ0.011 1107 3.11 ÿ1.59 17.2 ÿ8.8

Dodge City, KS 359 0.017 ÿ0.015 1208 1.95 ÿ0.57 10.0 ÿ2.9

El Paso, TX 359 0.014 ÿ0.002 2462 2.05 ÿ1.09 9.5 ÿ5.1

Ely, NV 350 0.021 0.007 1313 2.34 1.33 13.8 7.8

Eugene, OR 359 0.019 0.018 3209 2.98 2.65 23.4 20.8

Fresno, CA 359 0.018 ÿ0.014 2084 1.59 ÿ0.39 7.5 ÿ1.9

Grand Junction, CO 235 0.026 0.018 604 2.10 0.61 11.8 3.4

Great Falls, MT 358 0.025 ÿ0.008 1263 2.21 1.00 15.2 6.9

Lake Charles, LA 319 0.023 ÿ0.019 769 2.39 ÿ0.48 13.2 ÿ2.6

Lander, WY 356 0.022 0.011 1429 2.45 1.17 14.4 6.9

Las Vegas, NV 359 0.010 0.002 1626 1.94 ÿ0.45 9.1 ÿ2.1

Los Angeles, CA 319 0.021 0.011 770 3.11 ÿ2.16 17.1 ÿ11.9

Madison, WI 356 0.028 ÿ0.001 1314 2.66 1.56 20.7 12.1

Medford, OR 359 0.017 ÿ0.001 1848 1.88 0.90 10.7 5.1

Miami, FL 358 0.016 ÿ0.005 1248 3.93 ÿ2.70 22.9 ÿ15.7

Midland, TX 312 0.010 0.005 774 2.16 ÿ0.60 10.8 ÿ3.0

Montgomery, AL 359 0.018 0.014 1299 2.31 0.81 13.6 4.7

Nashville, TN 359 0.017 ÿ0.013 1721 2.05 0.47 11.8 2.7

Omaha, NE 359 0.024 ÿ0.016 1475 2.38 0.62 14.7 3.8

Phoenix, AZ 359 0.022 ÿ0.019 2556 1.99 ÿ1.19 9.7 ÿ5.8

Pittsburgh, PA 141 0.043 0.042 425 2.90 2.11 21.4 15.6

Portland, OR 359 0.037 0.032 1301 2.86 2.54 24.9 22.0

Raleigh, NC 319 0.027 0.027 714 2.38 1.11 14.4 6.7

Salt Lake City, UT 359 0.034 0.034 1666 2.33 1.11 14.2 6.8

Santa Maria, CA 65 0.018 ÿ0.013 283 1.53 ÿ0.91 8.0 ÿ4.8

Savannah, GA 359 0.015 ÿ0.012 1505 2.36 ÿ0.05 14.2 ÿ0.3

Seattle, WA 359 0.021 0.005 1657 2.54 2.14 21.9 18.5

Tallahassee, FL 345 0.017 0.012 1243 2.33 1.20 15.2 7.8

All stations 12205 0.023 0.002 52470 2.39 0.51 14.9 4.3
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sunlight at the observation locations during some parts

of the day. This variation would result in positive

prediction biases, since the algorithm used here to

predict potential radiation assumes that the horizons

are unobstructed at all times. These problems might be

resolved through a more detailed analysis of the

hourly radiation observations, and with the help of

site-speci®c aerosol data. Measurement error and

instrumentation differences could also explain some

biases.

Fig. 2. Observed (solid) and predicted (dashed) Tt,max at nine stations with relatively complete annual records. Predictions use the (z,�,e)

model. For each plot, x-axis is yearday and y-axis is Tt,max (unitless). Stations are arranged alphabeticaly.
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Another apparent problem is a negative prediction

bias during the winter for some of the coldest stations

(e.g., Madison, WI, Great Falls, MT, and Bismarck,

ND). A possible explanation for these underpredic-

tions is that snow-covered ground results in higher

observed daily transmittance than would otherwise be

expected, due to multiple re¯ections between the

surface and the atmosphere (Kiehl, 1992). We used

observations of snow depth from the SAMSON data-

base to explore this possibility, and found a corre-

spondence between snow depth and the prediction bias

for Tt,max. Fig. 3 shows an example of this correspon-

dence for Bismarck, ND, where the prediction bias for

most days with snow on the ground was usually

negative and well outside the range of biases observed

on days without snow. The multiple re¯ection effect is

related more to fractional snow cover in the region

around the station than to snow depth at the station. At

Bismarck, bias is negative but shows little pattern with

increasing snow depths above 10 cm. There should,

however, be a positive relationship between snow

depth and fractional coverage for the surrounding area

in the lower range of snow depth, due to spatial

variation in snow accumulation and melting (Sellers,

1992). Such a relationship can be inferred from Fig. 3,

in the range of snow depth from 0 to 10 cm. In that

range bias values for the lowest snow depths are

similar to those observed under snowless conditions,

with a general trend towards increasing negative bias

with increasing snow depth.

It seems likely, from this crude analysis, that some

kind of snow-cover component in the model would

lead to improved predictions of Tt,max in snowy cli-

mates. In the absence of observed fractional snow

cover for sites where the solar radiation model is to be

applied, a snow accumulation and melt component of

some sort would need to be added to the model. Plenty

of candidate snow-models exist, but their application

to the M1 algorithm is beyond the scope of this study.

We note that the same multiple re¯ection effect should

apply to other high-albedo cases, such as for bright

soils with low vegetation cover.

Fig. 3. Influence of snowdepth on bias in Tt,max predictions, at Bismarck, ND. Dashed line is the mean bias for days without snow, dotted lines

show � two standard deviations for this mean.
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3.2. Parameterization of B and C

Fig. 4 shows an example of the optimized values of

B for each of 400 ordered subsets of daily data

(n � 133 station-days per subset), plotted against

the subset means of �T . The solid line shows

Eq. (11) ®t to these data (R2 � 0.40). These optimized

values for B were determined with �0,nadir,dry � 0.87,

� � ÿ6.1e ÿ 5, and C � 1.5. We found that Eq. (11)

®ts the optimized values of B equally well over a range

of values for C, although the values for b0, b1, and b2

vary signi®cantly with changes in C.

B&C noted that their empirical expression for pre-

dicting B was derived for stations receiving most of

their precipitation in the winter, and that stations with

a summer maximum might follow a different pattern.

The SAMSON database includes both winter- and

summer-maximum precipitation stations, as well as

intermediate cases. When optimal values of B were

determined for ordered subsets of �T from individual

stations, we found that the relationship between opti-

mized values of B and �T varied across the winter±

summer precipitation gradient (Fig. 5). By pooling

data from all stations, our method results in predic-

tions for B from Eq. (11) that are too high for the

winter-precipitation stations and too low for the sum-

mer-precipitation stations (Fig. 5, inset). These biases

are most severe for the lower range of �T (overcast

periods). Overestimates (underestimates) of B result in

overestimates (underestimates) of Tf,max and Rgh.

It seems plausible that the trend of decreasing B

with increasing �T (observed to varying degrees for

all stations in this study) is related to surface energy

partitioning, with a given observed value of �T

requiring more energy input for a wet surface than

for a dry one. This physical relationship is obscured in

our analysis, as well as in M1, by the fact that we are

relating a proportional index of Rgh (Tf,max) to �T,

instead of predicting Rgh directly. So, while a given

�T and surface moisture state may indicate a unique

Rgh, the physical relationship does not indicate a

unique value of Tt, or Tf,max, since these are related

Fig. 4. Fitted parameters for Eq. (11) derived from optimized values for B over 400 sorted subsets (n � 133 station-days per subset) of daily

data.
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to Rgh through Rpot, which is varying. Another poten-

tially confounding factor is the depth of the well-

mixed layer of air near the surface, which will vary

with radiation input and near-surface atmospheric

stability. The mixed-layer depth during the period

of low �T will typically be greater for summer- than

for winter-precipitation stations, so a given daily �T

in the summer-precipitation case requires more energy

input, having changed the temperature of a larger

volume of air. We tried various alternative forms

for Eq. (11) in an attempt to account for these in¯u-

ences, but we found no single variable or combination

of variables that gave better ®nal estimates of Rgh than

the form shown here. Alternative forms which

improved predictions for the extreme stations, such

as the inclusion of Rpot as a predictor, resulted in

poorer predictions for the intermediate stations and an

overall reduction in prediction accuracy.

Despite the low R2 for the curve in Fig. 4, and the

apparently poor behavior of Eq. (11) at the extremes

of the winter- versus summer-precipitation gradient

(Fig. 5), we found that predictions of Rgh using

Eq. (11) were degraded by only 10% compared to

predictions of Rgh using the optimized values of B

shown in Fig. 4 (MAE from Eq. (11) of

2.3 MJ mÿ2 dayÿ1, versus 2.1 MJ mÿ2 dayÿ1 when

using the optimal values of B). It may be that by

accurately describing the spatial and temporal varia-

tion in Tt,max, our method avoids larger errors from an

inadequate parameterization of B.

3.3. Cross-validation

Table 3 shows the cross-validation MAE and bias

for predictions of Tt,max at each station. After weight-

ing for the number of observations at each station, the

pooled MAE is 0.0224 (about 3.2% of the observed

pooled mean value for Tt,max) and the pooled bias is

�0.0016 (about �0.2% of observed Tt,max). For all

stations, the optimal value for �0,nadir,dry was 0.87, and

Fig. 5. Curve from Fig. 4 overlaid on optimized values of B derived from sorted subsets of daily data taken from individual stations. Square

symbols are from data at Eugene and Portland, triangle symbols are from data at Daytona Beach and Miami. Inset graphs illustrate the contrast

in seasonal patterns of precipitation and �T between these two subsets of stations.
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the optimal value for � was either ÿ6.1e ÿ 5 or

ÿ6.2e ÿ 5.

Cross-validation estimates of MAE and bias for

prediction of Rgh at each station are also shown in

Table 3. When weighted by the number of observa-

tions at each station, the resulting pooled MAE is

2.39 MJ mÿ2 dayÿ1, and the pooled bias is

�0.51 MJ mÿ2 dayÿ1. The cross-validation optimized

value of C for each station was either 1.5 or 1.4. Cross-

validation values for the coef®cients of Eq. (11) were

more variable. To illustrate the pattern of error in the

pooled dataset, daily predictions versus observations

are plotted together for all stations in Fig. 6.

With a few exceptions, the highest and lowest

values of observed Rgh are predicted very well, with

reduced prediction accuracy in the middle range of the

observations. Partly cloudy days are likely to fall in

this middle range. We expect lower model accuracy on

days with partial cloud cover than on days with

complete cloud-cover or on clear days, since the

model relies on the difference between two instanta-

neous temperatures (the daily maximum and mini-

mum), and since partial cloud cover will induce high

variance in sub-daily air temperatures. It may not be

possible to overcome this source of error without

abandoning the basic premise of the model.

Fig. 7 shows the temporal variation in model per-

formance, by day of year. MAE, when measured in

MJ mÿ2 dayÿ1, increases from January through

March, is highest from April through August, and

falls off again through December. By plotting the same

errors as a percent of the mean observed values on

each day, it is clear that summer errors are high due to

the greater overall radiation loads, and as a percent are

only half as large as the winter errors. Seasonal

variation in bias shows a strong pattern, with small

negative biases (underpredictions) around mid-sum-

mer and larger positive biases through the fall and

winter, with a peak positive bias in the spring. Since

the bias for many stations is relatively close to zero

throughout the year, pooled seasonal variations are

strongly in¯uenced by a small number of stations with

strong and seasonally varying biases, some possible

causes of which have already been addressed.

Fig. 6. Cross-validation predictions vs. observations for Rgh, pooled for all stations, n � 52470 station-days.
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The cross-validation statistics by KoÈppen climate

codes are shown in Table 4. The most obvious differ-

ences are in the biases for predictions of Rgh, with the

highest positive value for the Cs stations, all of which

are in the Paci®c Northwest coastal area, and the

lowest negative value for the Aw code, represented

here by a single station, Miami. These extreme biases

result from the inadequate predictions of B from

Eq. (11). It is interesting to note that the errors for

these stations (Cs and Aw) for predictions of Tt,max are

Fig. 7. Temporal variation in cross-validation MAE and bias for predictions of Rgh.

Table 4

Cross-validation results by KoÈppen codes

Code (stations) Predictions of Tt,max Predictions of Rgh

n MAE

(Unitless)

Bias

(Unitless)

n MAE

(MJ mÿ2 dayÿ1)

Bias

(MJ mÿ2 dayÿ1)

MAE

(% of observed)

Bias

(% of observed)

Df (9) 2580 0.031 0.002 9393 2.48 1.22 17.5 8.9

Cf (14) 4037 0.021 0.002 15206 2.45 0.52 14.6 3.5

Cs (5) 1501 0.023 0.012 8298 2.58 2.02 19.9 16.2

Cw (1) 359 0.024 ÿ0.012 1802 2.89 0.35 17.2 2.1

Aw (1) 358 0.016 ÿ0.005 1248 3.93 ÿ2.70 22.9 ÿ15.7

BS (7) 2293 0.019 0.003 9879 2.05 ÿ0.03 11.0 0.2

BW (5) 1077 0.015 ÿ0.007 6644 2.00 ÿ0.97 9.5 ÿ4.6
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not very different from the other non-arid codes,

indicating that Eq. (7) performs well in these climates.

Predictions for both Tt,max and Rgh are better for the

semi-arid and arid stations (BS and BW) than for the

other climates. This result is to be expected, since

clear-sky transmittance at these stations is less in¯u-

enced by water vapor, and variation in Rgh is in¯u-

enced more strongly by Rpot than in the wetter

climates.

3.4. Final model formulation

Fig. 8 shows a contour plot of pooled MAE for

predictions of Tt,max over ranges in both �0,nadir,dry and

�, using Eq. (7). The asterisk marks the location of

the optimal parameter pair: �0,nadir,dry � 0.870, � �
ÿ6.1e ÿ 5. The dashed line in Fig. 8 indicates the 0.0

contour for prediction bias, illustrating that bias and

MAE are optimized at very nearly the same parameter

values. Variation in pooled MAE and bias for predic-

tions of Rgh over a range of values for C shows an

optimal value of C � 1.5 (Fig. 9). The ®tted coef®-

cients for Eq. (11) with C � 1.5 are: b0 � 0.031,

b1 � 0.201, and b2 � 0.185.

3.5. Dewpoint temperature requirement

It was the explicit intention in the original formula-

tion of M1 to allow predictions of Rgh from observa-

tions only of daily maximum and minimum

temperatures and daily precipitation, since these are

the variables most commonly available from current

and historic surface observation networks. We have

violated that logic here by assuming that dewpoint

temperature observations are also available at the

prediction site. For the primary stations in the SAM-

SON database, this assumption is valid, but in general

it is not. As in our previous work in estimating daily

Fig. 8. Surface of MAE for predictions of Tt,max, showing variation over a range of values for � and �0,nadir,dry. Dashed line shows the

bias � 0.0 contour, and asterisk marks the parameter pair selected as the final model parameters. Tick marks on contour lines point toward

lower values of MAE.
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surface meteorological variables (Running et al.,

1987; Thornton et al., 1997), the impetus for this

analysis has been to improve our ability to perform

terrestrial ecosystem process simulations over spatial

domains suf®ciently large that installing new instru-

mentation is not practical. The current study will be

useful in that respect only if we are able to overcome

the lack of dewpoint temperature observations.

Kimball et al. (1997) presented a method for the

estimation of dewpoint temperature from observations

of daily air temperature and precipitation that may

help us resolve this problem. Their method improves

on estimates made from the assumption that dewpoint

temperature and daily minimum temperature are

approximately equal (Running et al., 1987), but

requires an estimate of radiation as an input. In pre-

liminary tests, we found that an iterative scheme

results in predictions for both radiation and humidity

that are nearly as good as those obtained from the

independent algorithms driven by observations of

humidity (as reported here) or radiation (as reported

by Kimball et al., 1997). We are continuing to explore

the union of these two methods.

3.6. Application to other climates

Although the SAMSON database covers a wide

range of temperate climates, it lacks stations in tro-

pical or boreal climates. Further model development

should focus on a global distribution of observations,

with an emphasis on tropical sites. Good performance

at stations in the north-central U.S. suggests that our

method may perform well in boreal climates, espe-

cially if the snowcover dependence (Fig. 3) can be

formalized. On the other hand the fact that Miami, our

only tropical station, has the largest MAE and the

second-worst bias for predictions of Rgh suggests that

some correction for tropical climates will be required.

Information on seasonal precipitation patterns might

be used to derive a crude atmospheric stability index to

further constrain predictions of B, but tests of this

notion will require more tropical data.

Fig. 9. Cross-validation MAE and bias for predictions of Rgh over a range of values for C.
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3.7. Application over complex terrain

Although the range in station elevations for our

study is nearly 2000 m, the distribution of observa-

tions is not suited to an analysis of these methods with

respect to radiation variations driven by complex

terrain. This is especially true for applications in an

extrapolation framework, where observations of tem-

perature and precipitation from a station at low eleva-

tion are taken to represent the conditions at a higher

elevation, after applying correction factors (as in

Running et al., 1987). It is generally true in the

mountainous parts of the current study area that

maximum temperature decreases with elevation more

rapidly than does minimum temperature (Thornton

et al., 1997). Under these conditions �T is reduced

with increasing elevation, resulting in lower predic-

tions of Rgh over high terrain than over adjacent low

terrain. In previous applications we have ignored the

variation in temperature with elevation when estimat-

ing transmittance at a site in higher terrain than the

nearest observations (Thornton et al., 1997). A more

satisfying solution will require the establishment of

observation networks in a number of mountainous

locales, preferably with disparate climates.
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