ARM Assembly
for Embedded

Applications Mazes & Gyroscopes

sth edition Topics: Shift, bitwise and bitfield instructions; address calculation with pointers.

Lab7D-Main.c

Programming Lab /D Click to download }

DANIEL W LEWIS

Prerequisite Reading: Chapters 1-7
Revised: December 24, 2024

Background®: This lab uses a randomized version of a depth-first search algorithm to create a maze. Frequently imple-
mented with a stack, this approach is one of the simplest ways to generate a maze using a computer. Consider the space for
a maze being a large grid of cells (like a large chess board), each cell starting with four walls. Starting from a random cell,
the computer then selects a random neighboring cell that has not yet been visited. The computer removes the wall between
the two cells and marks the new cell as visited, and adds it to the stack to facilitate backtracking. The computer continues
this process, with a cell that has no unvisited neighbors being considered a dead-end. When at a dead-end it backtracks
through the path until it reaches a cell with an unvisited neighbor, continuing the path generation by visiting this new,
unvisited cell (creating a new junction). This process continues until every cell has been visited, causing the computer to
backtrack all the way back to the beginning cell.

Assignment: As described above this algorithm involves deep recursion which may cause stack overflow issues on some
computer architectures. This lab uses an algorithm in which the recursion has been changed into a loop by storing back-
tracking information in the maze itself. This also provides a quick way to display a solution, by starting at any given point
and backtracking to the beginning. The program keeps track of the status of cell walls in an array of 4-bit "nibbles" (two per
byte) — one nibble per cell.

The main program will compile and run without writing any assembly. However, your task is to create equivalent replace-
ments in assembly language for the following two functions found in the C main program to store and retrieve individual
nibbles within the array. The original C versions have been defined as “weak” so that the linker will automatically replace
them in the executable image by those you create in assembly; you do not need to remove the C versions. This allows you
to create and test your assembly language functions one at a time. Your solutions should execute as fast as possible, so using
loops is not acceptable.

void PutNibble(void *nibbles, uint32_t which, uint32_t value) ;
uint32_t GetNibble(void *nibbles, uint32_t which) ;

Parameter Description

. . ABRM A bl
nibbles Starting address of the array of nibbles. for EmhEddeisﬁﬂfcagi,ms
which A nibble position within the array of nibbles.
value A four-bit binary value (0000 to 1111) r

The board incorporates a gyroscope that senses an-
gular velocity in each of three directions. The pro-
gram integrates the angular velocities to determine
angular positions (roll, pitch and yaw). Roll is like
tilting your head left or right; pitch is like tilting
your head forward and backward; yaw is like turn-
ing your head left and right. The program only uses
the roll and pitch sensors. Test your code using the
C main program. When the program starts (or
when you press the black pushbutton) it first performs a gyro calibration after
which a randomly generated maze should be displayed, similar to the one shown
on the right. The object is to move the red ball to the green square by tilting the
board towards the direction you would like the ball to move. Pressing the blue
push button starts over with a different maze.

2 & Gyroscopes

! https://en.wikipedia.org/wiki/Maze generation algorithm#Depth-first search



https://en.wikipedia.org/wiki/Maze_generation_algorithm%23Depth-first_search

