

Programming Lab 12A

Scaling Data with SIMD
Topics: SIMD processing, finding minimum and maximum values of an array.

Prerequisite Reading: Chapters 1-12
Revised: January 1, 2021

Click to download

Lab12A-Main.c

Background: Plotting a set of values on a bar graph requires deter-

mining the minimum and maximum values (i.e., the range) so that the

data can be scaled to fit the screen coordinates of the graph. There are

three fairly well-known algorithms for finding the minimum and max-

imum: linear (sequential) search, comparing adjacent pairs, and divide

and conquer. All three solutions are 𝑂(𝑛), but differ in their execution

time due to differences in the number of comparisons they require.

Assignment: The main program includes all three of these algorithms

and a fourth named LinearSIMD that is a modified linear search us-

ing SIMD instructions that makes multiple comparisons simultane-

ously. I.e., you can compile and run the program without writing any

assembly. However, your task is to create an equivalent replacement

for LinearSIMD in assembly using the C version to guide your im-

plementation. The original C version has been defined as “weak”, so that the linker will automatically replace it

in the executable image by the one you create in assembly; you do not need to remove the C version.

The first parameter of function LinearSIMD is the starting address of a

word-aligned array of 16-bit unsigned integers; the second is the number

of items in the array. The function returns a 32-bit word in register R0,

with the minimum value in the least-significant 16 bits and the maximum

in the most-significant 16-bits.

The main program creates a random array of integers, measures the ex-

ecution time of all four algorithms, and then uses the minimum and max-

imum values to scale the array so that it may be plotted on the display.

This process repeats indefinitely five times per second unless an error

occurs. If your code is correct, the display will look like the one shown.

The numbers in the last four rows indicate performance as measured by

the total number of clock cycles of each algorithm divided by the number

of items in the array1. If your code contains an error, its results will be

displayed as white text on a red background and testing will pause; press-

ing the blue pushbutton will cause testing to resume. To receive full

credit, your SIMD assembly version must be faster than all three of the

other algorithms.

1 Note: The main program contains both a recursive and an iterative implementation of the divide and conquer

algorithm. The recursive version is not used, but provides a clearer representation of the algorithm; the iterative

version is used by the program for better run-time performance. Although the divide and conquer algorithm and

the comparing pairs algorithm both use about the same number of comparisons, the additional overhead of stack-

ing and unstacking parameters causes the divide and conquer implementation to be significantly slower.

Algorithm

compares:

Best
case

Worst
case

Sequential search 2𝑛 − 1 𝑛 − 1

Comparing pairs
3𝑛

2
− 2

3𝑛

2
− 2

Divide and conquer
3𝑛

2
− 2

3𝑛

2
− 1

http://www.engr.scu.edu/~dlewis/book3/labs/Lab12A-Main.c
http://www.engr.scu.edu/~dlewis/book3/labs/Lab12A-Main.c

