

Programming Lab 10A

Solving Quadratics with
Software Floating-Point
Topics: Floating-point emulation
Prerequisite Reading: Chapters 1-10
Revised: May 27, 2021

Click to download

Lab10A-Main.c

Click to download

real-libs.zip

Background: This assignment is identical to Lab 9A except that instead of hardware

floating-point instructions, your code will use a software floating-point emulation li-

brary. The library uses 32-bit integers to hold the bit patterns of floating-point values:

typedef int32_t float32_t ;

Assignment: The main program will compile and run without writing any assembly.

However, your task is to create equivalent replacements in assembly language for the

following four functions found in the C main program. The original C versions have

been defined as “weak” so that the linker will automatically replace them in the execut-

able image by those you create in assembly; you do not need to remove the C versions.

This allows you to create and test your assembly language functions one at a time.

float32_t Root1(float32_t a, float32_t b, float32_t c) ;

Computes the root given by
−𝑏+√𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡(𝑎,𝑏,𝑐)

2𝑎

float32_t Root2(float32_t a, float32_t b, float32_t c) ;

Computes the root given by
−𝑏−√𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡(𝑎,𝑏,𝑐)

2𝑎

float32_t Quadratic(float32_t x, float32_t a, float32_t b,
float32_t c) ;

Computes the quadratic, 𝑎𝑥2 + 𝑏𝑥 + 𝑐 Note: The most efficient implementation is 𝑐 + 𝑥(𝑏 + 𝑎𝑥)

float32_t Discriminant(float32_t a, float32_t b, float32_t c) ;

Computes the value of the discriminant, 𝑏2 − 4𝑎𝑐 Note: Functions Root1 and Root2 should call this function.

Note that your assembly language code must call several C functions (shown below) from a floating-point emulation library. Your code

will likely need to push and pop several registers; be sure that the total number of registers you push and pop is even so that the address

held in the stack pointer remains a multiple of eight to satisfy the data alignment requirements of those library functions.

Download the main program and ZIP file containing the floating-point emulation libraries. Extract file lib2-float.c to the src

directory of your workspace. Use the following functions to perform arithmetic:

float32_t AddFloats(float32_t a, float32_t b) ; // returns a + b

float32_t SubFloats(float32_t a, float32_t b) ; // returns a – b

float32_t MulFloats(float32_t a, float32_t b) ; // returns a * b

float32_t DivFloats(float32_t a, float32_t b) ; // returns a / b

float32_t SqrtFloat(float32_t x) ; // returns sqrt(x)

Test your program with the main program. If your code is correct, the display should look similar to the image shown, the sliders can

be used to vary the coefficient values, and pressing the blue pushbutton will restore the initial conditions. Otherwise, incorrect return

values will cause an error message to be displayed as white text on a red background and the program will be halted.

http://www.engr.scu.edu/~dlewis/book3/labs/Lab10A-Main.c
http://www.engr.scu.edu/~dlewis/book3/software/real-libs.zip
http://www.engr.scu.edu/~dlewis/book3/labs/Lab10A-Main.c
http://www.engr.scu.edu/~dlewis/book3/software/real-libs.zip
https://www.engr.scu.edu/~dlewis/book3/docs/StackAlignment.pdf
http://www.engr.scu.edu/~dlewis/book3/labs/Lab10A-Main.c
http://www.engr.scu.edu/~dlewis/book3/software/real-libs.zip

