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Project 4: The “Butterfly Effect” and Intermittency

In this project we will examine the sensitivity of nonlinear dynamic systems to small changes

in parameters and initial conditions. Our objective will be to show that in some cases even

the most miniscule variations can produce significant effects, while in others there will be no

noticeable difference at all. Edward Lorenz (who discovered the phenomenon of chaos) described

this hypersensitivity to small changes as the “butterfly effect”, referring to the possibility that

something as insignificant as the movement of a butterfly’s wings could ultimately affect global

weather patterns.

We will also consider an unusual property known as intermittency, where the system exhibits

long periods of regular behavior which are interrupted by sudden and unpredictable aperiodic

bursts. The existence of such phenomena suggests that the behavior of physical systems can

occasionally deviate from empirically established rules and patterns for no apparent “reason”.

This brings into question the classical assumption that every observable effect must have an

identifiable cause.

Problem 1. Consider the second order system

ẋ1 = −3x1 + 4x21 − 0.5x1x2 − x31
ẋ2 = −2.1x2 + x1x2

(a) Solve the equation numerically for initial condition: x0 = [4; 1], using t = 0 : 0.01 : 50.

Repeat this process with initial condition

y0 = x0 + 1e− 4 ∗ [1; 1]
which differs from the previous one at the fourth decimal point. To evaluate the difference

between these two solutions (whose components will be denoted [x1;x2] and [y1; y2], respectively)

plot x1−y1 as a function of time. Would you say that a small perturbation in the initial conditions
produces a small change in the solution, or is the change substantial?

(b) Repeat part (a) of the problem using initial condition

y0 = x0 + 1e− 8 ∗ [1; 1]
and plot x1 − y1 as a function of time. Do your results confirm your previous conclusions?

Explain.

Problem 2. Consider the second order system

ẋ1 = x2

ẋ2 = (1− x21)x2 − x1
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(a) Solve the equation numerically for initial condition: x0 = [−1.5; 3.5], using t = 0 : 0.01 : 10.
Repeat this process with initial condition

y0 = x0 + 1e− 4 ∗ [1; 1]

and plot x1 − y1 as a function of time. Would you say that a small perturbation in the initial
conditions produces a small change in the solution?

(b) Repeat part (a) of the problem using initial condition

y0 = x0 + 1e− 8 ∗ [1; 1]

and plot x1 − y1 as a function of time. Do your results confirm your previous conclusions?

Explain.

Problem 3. Consider the second order system

ẋ1 = x2

ẋ2 = (1− x21)x2 − x1 + 0.5 cos 2t

(a) Solve the equation numerically for initial condition: x0 = [−1.5; 3.5], using t = 0 : 0.01 : 50.
Repeat this process with initial condition

y0 = x0 + 1e− 4 ∗ [1; 1]

and plot x1 − y1 as a function of time. Would you say that a small perturbation in the initial
conditions produces a small change in the solution?

(b) Repeat part (a) of the problem using initial condition

y0 = x0 + 1e− 8 ∗ [1; 1]

and plot x1−y1 as a function of time (use t = 0 : 0.01 : 10 in this case). Do your results confirm
your previous conclusions? Explain.

Problem 4. Consider the third order system

ẋ1 = −10x1 + 10x2
ẋ2 = −x1x3 + 28x1 − x2
ẋ3 = x1x2 − 2.5x3

(a) Solve the equation numerically for initial condition: x0 = [1; 1; 1], using t = 0 : 0.01 : 100.

Repeat this process with initial condition

y0 = x0 + 1e− 4 ∗ [1; 1; 1]
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and plot x1 − y1 as a function of time. Would you say that a small perturbation in the initial
conditions produces a small change in the solution?

(b) Repeat part (a) of the problem using initial conditions

z0 = x0 + 1e− 8 ∗ [1; 1; 1]

and

w0 = x0 + 1e− 12 ∗ [1; 1; 1]
(we will denote the corresponding solutions by [z1; z2; z3] and [w1;w2;w3], respectively). Plot

x1−z1 and x1−w1 as functions of time, and use these graphs to evaluate whether your previous
conclusions about the system’s sensitivity to initial conditions are still valid.

(c) Based on the results obtained in parts (a) and (b), would you say that this system is

hypersensitive to differences in initial conditions? If not, is it in any way different from the ones

considered in Problems 1-3? Explain.

Problem 5. In this problem we will consider the first order discrete system

x(k + 1) = px(k)[1− x(k)]

in which parameter p is set to equal 3.9 (recall that we already analyzed this system in Project

3).

(a) Solve the equation numerically for initial condition x(0) = 0.5, using k0 = 0 and kvect =

0 : 1 : 250. Repeat this process with initial condition

y0 = 0.5 + 1e− 4

and plot the difference x− y using function

plot(kvect, x− y, kvect, x− y, ‘.’)

Would you say that a small perturbation in the initial conditions produces a small change in the

solution?

(b) Repeat part (a) of the problem using initial condition

z0 = 0.5 + 1e− 8

(following our previous notation, we will denote the corresponding solution by z). Plot the

difference x− z as a function of k. Are your results consistent with your previous conclusions?
(c) Based on the graphs obtained in parts (a) and (b), would you say that hypersensitivity to

initial conditions can occur even in a simple first order discrete system? Does this surprise you?

Explain.

Problem 6. In this problem we will consider the same system as in Problem 5, and focus on

values of parameter p in the range 3.82 ≤ p ≤ 3.83.
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(a) Set p = 3.82, and solve the equation numerically for initial condition is x(0) = 0.5 (with

k0 = 0 and kvect = 0 : 1 : 500). Plot x(k) as a function of k, and use this graph to determine

whether or not the solution displays any form of regularity.

Note: To keep the graph as simple as possible, use the command

plot(kvect, x)

instead of

plot(kvect, x, kvect, x, ‘.’)

(b) Repeat part (a) with p = 3.83, and plot x(k) as a function of k. How does this solution

compare to the one obtained using p = 3.82? Explain.

Note: For a better resolution, set the data bounds for the x -axis to [0 100].

(c) For some value p0 between 3.82 and 3.83, the system makes a transition from random to

orderly dynamic behavior. Find a value of p that is sufficiently close to p0 to produce a graph

of the form shown in Fig. 1. Adjusting the data bounds for the x -axis to [350 500] provides a

closer look at the irregular segment of this solution, which is shown in Fig. 2.

Note: You will need to specify p using at least 5 decimals replicate this plot.

(d) If you were to empirically observe the behavior shown in Fig. 1 over a long period of time

(where k could be interpreted as the number of months, for example), how would you interpret

it? Would you say that your data conforms to a “law”? If so, how would you explain the

irregularities that occur between k = 410 and k = 430? If not, how would you explain the long

intervals orderly behavior?
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