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HANDOUT #4

1. Given system
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where u(t) is the step function and initial conditions
are x,(0)=x,(0)=1. Compute the state vector x(t) and
rransfer function G{s) using the transition matrix.

~

2. Given multi-input, multi-output system:
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where u,(t) is the step function, ﬁg(t)zﬁ(t) and the
initial conditions are x,(0)=0; x,{0)=1. Compute the

state vector x(t) and the transfer function matrix G(s),
using the transition matrix.




SOLUTIONS

We are given system:
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with initial conditions x,{0)=x,(0)=1. Since we need to
solve it using the transition matrix, we form:
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Observing that s®+3s+2=(s+1l) (s+2), we have
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Before taking the inverse Laplace transform, we must
perform a partial fraction expansion of each term. This
vields:
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Now we can take the inverse Laplace transform, obta;l.nlng
the transition matrix:
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The solution c¢an be written as:
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The first part is easily computed. Since x,(0)=x,(0)=1,
we have;

The second part is somewhat messier. First of all,
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Now, since u(t)=1, (120), the second term is computed as:
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It remalins to compute G(s). This is easy,
already know ®(s). Recalling that

c=[1 0] and B =

we have
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Here we have a multi-input, multi-output system:
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Again, since we are using the transition matrix approach,
we first form: ;
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Then,
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Applying partial fraction expansion to ®(s}, we have:
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Taking the inverse Laplace transform, we obtain
transition matrix as:

We are now ready to solve for x(t):
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Since x {0)=0, %(0)=1=

and
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Recalling that wu,{(T)=1 (1t20) and u,(t)=08(t), the two
integrals are
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To compute G{s}, we have:
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G{s)=C(sI-A)™'B

Baving already computed (sI-A}"', we easily obtain
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Note that G(s) is now a 2x2 matrix, since there are two
inputs and two ocutputs.




