ELEN 236

HANDOUT #7

For matrix

compute f{A)=e®® using:

a) the Cayley-Hamilton theoream

b) Laplace transforms
c) the Jordan canonical

Repeat parts a) and c¢) of

For matrix

compute f{A)=e® using the

form

problem 1. for £{A)=A% .

[
Cayley-Hamilton theorem only.




SOLUTICONS

1. i) First we will use the approach based on the Cayley-
Hamilton theorem. Matrix A 1s the one considered in
the previous handout, where we showed that A,=-1 and
A,=-2, Bearing in mind that A is a 2x2 matrix, we
have:

f(x)=e*® and R{X)=a,*0,X

To compute ¢, and o, we use:

e f=f{A,) =R(A,) =a +ta A,

e 2t=f (A,) =R (A,) =0 +a, A,

which gives rise to the following system of
equations:

Solving this we easily obtailn

0,=2e t-e3t

o, =e t-g2t

Consegquently,
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1i) Using Laplace transforms, we have:
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To make use of the Jordan canonical form, we first
need to compute the eigenvectors of A. Fortunately,
this was already done "in the previous handout,

vielding

iii}
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Since M'AM=J it follows that

ME(AYM=£(T). = £(A) =ME(TIMT

Function f(J} is easy to compute, since J 1is
diagonal:



Consequently,
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Here we have the same matrix A as in problem 1., but a
different function: f(x}=xF. Also, we don’'t have to do
the problem in all three ways, but only using the Cayley-
Hamilton theorem, and the Jordan form.

i) Following the firstlapproach, we have:
FlA)=(-1) = ta A,

£(A,) ={~2)¥=a +a,A,

resulting in system

Solving for ¢, and o,, we obtain:

o,=2 (~1)%-(-2)% o, =(~1Y*-(-2}%

We now have:




AXsF(A) =aq T+a, A=

ii) Matrices M, Mt and J are the same as in problem 1,
and

£(A) =ME () M~

Again, since J is diagonal f(J} is easily computed
as:

(-1)% 0
(7 =
0 (-2)k

Therefore,
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3. This problem is a little different than the previous two.
It is intended to illustrate how we can handle situations
when the eigenvalues are complex. In particular, matrix




has characteristic polynomial

[A—Al1=l2+k+g-

with roots

Although the eigenvalues are complex, we can still

proceed in the same way as before:
£{A,) =e™f=q +a, A,

£(A,) =e*f=q +ah,
which results in system:
1A e,
1A eyl

Multiplying row 1 by -1 and adding it to row 2
becomes

i

this



Observing that A,~A=-3j3, it follows that
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Going back to the first eqguaticn, we have
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Multiplying out the first term and expanding the second
one by Euler‘s formula, we obtain:
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As you can see, 0, and ¢, are real numbers, and we can

compute
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