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GAUSSIAN ELIMINATION

Elementary transformations

Type 1  Divide a row by a number.

Type 2  Multiply a row by a number and add it to another row.
Type 3  Interchange two rows.

The process of Gaussian elimination can always be represented as a

sequence of elementary transformations. In some cases, only
transformations of Type 2 are necessary.

Performing any elementary transformation on a matrix is equivalent to
multiplying it on the left with a special matrix. For the three types of
transformations, these special matrices are of the following form

Type 1

100
P, =10a0
001

Multiplying a 3 x 3 matrix A on the left by P, corresponds to multiplying
its second row by a.



Type 2

100
P,=1010
b 01

Multiplying a 3 x 3 matrix A on the left by P, corresponds to multiplying
its first row by b and adding it to the third row. Note that the
determinant of P, is equal to 1.

Type 3

0 01
P,=1010
100

Multiplying a 3 x 3 matrix A on the left by P; corresponds to
interchanging the first and third rows.



Some applications of Gaussian elimination

1) Solving linear equations A x = b.
2) Computing the determinant of a matrix.
3) Determining the rank of a matrix.

4) Matrix inversion.

EXAMPLE 1

Consider the following matrix

103
A=1221
111

The Gaussian elimination proceeds as follows :

10 3 100
A=(221| = PA=[210/A
111 | 001




- 7 - -
100 1 0 3
PA=|010[4 = A =02 -5
101 | 0 1 2
(1 0 0| (1 0 3|
0 1 0 0 2 -5
P-A, = ‘A, = A=
0o -1 1 00 1L
| 2 i i 2

Note that here we used only Type 2 transformations, so we can compute
the determinant directly.

Matrix inversion

We now show how to invert the matrix in Example 1. We first form an
augmented matrix made up of matrix A and the identity matrix

1 0 3.1 0O
2 21 0 1 O
1 11 0 0 1
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Rank determination

Consider the matrix

11017
0210
2202

042 0|

After Gaussian elimination, we obtain

11017
0210
0000
000 0

It is now obvious that rank(A) = 2, since the largest nonsingular
submatrix of A* has dimension 2 x 2.



SINGULAR SYSTEMS OF EQUATIONS

Consider the matrix A from the previous example, and solve A x = b in
three different cases.

Case 1 (when the right hand side is zero)

(11017 11017 ™M [0 ]
10 0210 X, 0
x =0 = =
0 2 0000/ x 0
i 2 0 | (0000 ]|y | 0 |
Solutions :
1 1
- —_s—t — I
X 2 2 -1
X, 1 1 0
=| = =5s| = |+t
X, 2 2 0
s 0
_x4_ » .
R A | 0

Here there are infinitely many solutions, since ¢ and s are arbitrary real
numbers.



Case 2

(110 1] 1 1101 1
0210 0 0210 0
X = = X =
2202 0 0000 2
l0420] |0 (0000 | 0 |

This is an inconsistent system of equations, so there are no solutions.

Case 3
(110 1] (1] (110 1] [ 1]
0210 0 0210 0
X = = X =
2202 2 0000O 0
104 2 0 | 0 00 0 0 | 0 |
The system is consistent, with infinitely many solutions
[ i [ |
T ] —s-t+1 l .- -
e 2 -1 1]
X, ls 1 t 0 0
= = = s | = + +
x, 2 2 0
) 0
| Xy - - - -
|t i . 0




GRAPHS

GRAPHS

A graph can be thought of as an entity made up of v vertices
(nodes) and e edges (branches) that connect them. If directions
are specified for each edge, we have a directed graph.

Directed graphs can be used to describe circuits. In this process,
one edge can represent any of the following :

|
|




Note that in the case of sources the direction of the
corresponding graph edge is preassigned.

EXAMPLE 1

® =

Graph

EXAMPLE 2

— T WwWv




Graph

SOME DEFINITIONS

SUBGRAPHS

A subgraph is any subset of vertices and edges from the original
graph. Note that a single vertex is a legitimate subgraph.

DEGREE OF A VERTEX

The degree of a vertex is equal to the number of edges that are
connected to it. It is usually denoted by deg(v).

LOOPS

A loop is a subgraph in which all vertices have degree = 2.



PATHS

A path is a subgraph in which all vertices have degree = 2
except two, which have degree = 1.

CONNECTED GRAPHS

A connected graph is a graph in which there is a path between
any two vertices.

SIMPLE GRAPHS

A simple graph is a graph with no multiple edges and no self-
loops.

TREES

A tree is a connnected subgraph that contains all v vertices of
the original graph and has no loops.

A tree can be determined by disconnecting edges of the original
graph one at a time, until no more loops are left. It can be shown
that in a graph with v vertices a tree has exactly v - 1 edges.
Edges that are not in the tree are referred to as links, and there
are e - v + 1 of them.



Number of candidates for a tree

The number of candidates for a tree is equivalent to the number
of different ways for selecting v - 1 out of a total of e edges.
This number is

e!
(e-v+D!v-1)!

Actual number of different trees

Not all tree candidates are legitimate trees, since some choices
of v - 1 edges can contain loops. In order to determine the exact
number of trees, it is first necessary to form an auxiliary matrix
H using the following set of rules :

1) Select a reference node. Only the remaining v - 1 nodes are
considered in forming H.

2) His a (v - 1) x (v - 1) matrix, with elements

h; = deg(v,)

h; = - K(, j)
where K(i, j) represents the number of edges connecting nodes
i and j (K(Z, j) = 0 when nodes i and j are not connected). Note

that in a simple graph K(i, j) is either O or 1.

3) The actual number of trees is equal to det (H).

5



EXAMPLE 3

There are 20 candidates for a tree

123
124
125
126

134

135
136
145
146
156

234
235
236
245
246
256

345 456
346
356



The auxiliary matrix H is

3 -1 -1
H=|-1 3 -1
-1 -1 3

Since det (H) = 16, it follows that exactly 4 of the candidates are
not legitimate. These are {1 2 5}, {13 6}, {23 4} and {4 5 6}.

FUNDAMENTAL CUTSETS

A cutset is a set of edges whose removal breaks up the original
graph into exactly two disconnected subraphs. A fundamental
cutset 1s a special kind of cutset which is always defined with
respect to a tree, and contains exactly one tree branch.

EXAMPLE 4

e (a5, c)
e > -

{a, d, f}

{f, e, c}




For a different choice of tree

{e.f, c}
{a, d, e, c}

{a, b, c}

Fundamental cutsets can be used to systematically formulate
Kirchoff’s current law equations. The definition of a fundamental
cutset secures that all such equations are independent. In this
context, it is also convenient to introduce the orientation of a
cutset, which coincides with the orientation of the tree branch
which defines it.

FUNDAMENTAL LOOPS

A fundamental loop is a special kind of loop which is always
defined with respect to a tree, and contains exactly one link. All
fundamental loops can be obtained by adding links to the tree
one at a time.



EXAMPLE 5

{f. d, e}
{c, b, e}

{a, d, b}

{c, b, d, f}

{e, f, d}

{a, d, b}

Fundamental loops can be used to systematically formulate
Kirchoff’s voltage law equations, which are guaranteed to be
independent. Again, it will be convenient to introduce the

orientation of a loop, which coincides with the orientation of the
link which defines it.



EXAMPLE 6

Graph

KCL equations

KVL equations

10



EXAMPLE 7

Graph

KCL equations

la+lb+lc=0

i-i, - i =

KVL equations

v -v,-v,=0

v —v,-v. =0
a C

11



EXAMPLE 8

3iﬁ
—
Rg
; AAA—
i
+ VA - [3.
{ AW 0— —MAWVY >
R3§ § Rj
R; §

Graph
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KCL equations

i +1, -1 =0
a c

b

za+zd+ze—zc=0

I
=1, +1, 0

KVL equations

-v, =0

Va—V b

d

vc—vf+vd+vb=0

ye+vf—vd=0

13



NETWORK MATRICES

Graph G (without a specified tree)

Vl

V3

V4
Rules for constructing an incidence matrix

a) Select a reference node, and consider only the v - 1 remaining vertices
(the dimension is (v - 1) x e).

b) For a branch ¢, : + 1 if its orientation is out of the vertex
- 1 if its orientation is info the vertex

For the graph shown above, the incidence matrix is :

2 s e €
v|1 1 1 0 0 0
A=vl0 -1 01 1 0
0 0 -1 -1 0 1



What happens if we do not disregard the reference node ? We would
have a v x e matrix A, :

This matrix has rank < v ! It can be shown that for any connected graph
rank(A) = v - 1 (that is, A has full rank).

Graph G (with a specified tree)

V1 pV3

V4

IMPORTANT NOTE : When a tree 1s specified, always number the links
first and tree branches last.



Renumbered incidence matrix :

e e e e e € _
w1l 1 0 1 0 0

A=v 0 0 1 -1 1 0
w0 -1 -1 0 0 1

THE FUNDAMENTAL CUTSET MATRIX

Rules for construction

1) Identify the fundamental cutsets and assign an orientation to each one
(this orientation is defined by the corresponding tree branch).

2) For a branch ¢, : + 1 if it agrees with the cutset orientation.
- 1 if it is opposite to the cutset orientation.

Fundamental cutsets for G




Matrix Q; for G

0
0

- 1 2 3 4 5 6 -
c,| 1 1 0 1 0 O
Q=61 1 1 0 1 0 “4)
C3L O -1 -1 0 0 1 ]
General structure
Q=0 I

There will always be an identity matrix in the part of O, corresponding
to tree branches, provided that links are numbered first. Otherwise, this
property will not hold in general.

THE FUNDAMENTAL LOOP MATRIX

Rules for construction

1) Identify the fundamental loops and assign an orientation to each one
(this orientation is defined by the corresponding link).

2) For a branch ¢, : + 1 if it agrees with the loop orientation.
- 1 if it is opposite to the loop orientation.



Matrix B; for G

_ € € € €, €& € _
Ll 1 0 0 -1 -1 0
B=L|0 1 0 -1 -1 1
l3 0 O 1 0 -1 1

General structure

There will always be an identity matrix in the part of B, corresponding
to the links, provided that links are numbered first.

RELATIONSHIP BETWEEN O AND B,

The basic relationship

Corrolary



RELATIONSHIP BETWEEN A AND B;

The basic relationship

A'B'=0
Corrolary

T -1
Bf12 =-A, A“

Note that matrix A,, is always nonsingular, since it is the incidence
matrix of the tree.

EXAMPLE

_mrm___@_

:

I+




Graph

Incidence matrix

-1

O 0 0 -1

-1

1




Fundamental cutset matrix

0

-1

0 O

1
0

-1 0 0 O
-1 0 O
1

1
1
-1

0

0 0 0 O

1

Fundamental loop matrix

1
1

-1

O 0 0 O

-1

0 0 0 O

1

0

-1

0 0 0 0 -1

1

0

0

1

0O 0 O




CURRENT- VOLTAGE RELATIONSHIPS

Kirchoff’s laws in the time domain can be written in matrix form

v, (D)
Bv,(®=0 (KVL) v =|--—--

V(D)

1,(2)
Q1,0 =0 (KCL) i(H=|-——--

i, (1)

There is a total of € equations (e - v + 1 equations by KVL and
v - 1 equations by KCL). On the other hand, there are 2e
unknowns (e currents and e voltages). We therefore need another
e equations, which we obtain from the  current-voltage
relationships (CVR).

To make these relationships algebraic, we first need to write
Kirchoff’s laws in the Laplace transform

BV, (s)=0 ; 01,(s)=0



RESISTORS

v.) =Ri() = V. (s)=RI()

INDUCTORS

vi(t)=Ld71ti = V.(s) =sLI(s) -Li,0)

CAPACITORS

(0=cl
L. = N—
‘ dt

Therefore,

v,(0)

A)

I(s) =sCV(s) -Cv.(0) = V,(s) = _15 I(s) +
- 8



MUTUAL INDUCTANCE

Case 1

di, |-

di
Ydt 0 dr

v,(H) =L

=L dij Iy di,
V. =7/, I + —_
J I dt dt

In Laplace transform,

V.(s) =sL1(s) - L, (0) +sMIj(s) —Mij(O)

V.(s) =sLL(s) - L;i,(0) +sMI (s) -~-Mi (0)



Case 2

iy

W -1,% -
V. =1, — - —_—
/ 7 dt dt

In Laplace transform,

V() =SLI,(s) - L,i,(0) - sML(s) +Mi 0)

Vj(s) =sLjIj(s) —Ljij(O) -sMI, (s) +Mi (0)



INDEPENDENT VOLTAGE SOURCES

V.(s) =R,1 (s) +Eg (s)

Variants with inductors and capacitors

V.(8) =sL,1(s) -L,i (0) +Eg(s)

1 1
V.(s) = EFI"(S) f— (v (0) -, (0)) + E (s)

k



INDEPENDENT CURRENT SOURCES

Ig CT) R}ééLix Vk

V,(5) =R, (s) + R (s)

Variants with inductors and capacitors

ik ik
————ailfp—————0 ———————0
+ +
+
's <D Lx giix Vi Ig Gt Wk
0

V,(s) = sLI,(s) - L,(i,(0) +i(0)) + sL,I (s)

1 1 1
V.(s) = .S_E.Ik(s) +—v(0) + ?Ig(s)

k S S,



GENERAL FORMULATION OF CVR

V.(s) = Z,(s)L () +E,(s) - L,i,(0) + Lv_(0)
S

This general format covers all the elements considered so far.
Matrix Z,(s) in the above equation is known as the edge
impedance matrix.

VOLTAGE SOURCE TRANSFORMATIONS

These transformations are necessary when there are no elements
in series with an independent voltage source.

Generic situation




Equivalent representations

or, alternatively




EXAMPLE 1

After a source transformation




Since nodes A and C are shorted the circuit can be redrawn as

R4

Rs § § R3
Ry

CURRENT SOURCE TRANSFORMATIONS

These transformations are necessary when there are no elements
in parallel with an independent current source.

Generic situation

10



Equivalent representations

or, alternatively

11



CONTROLLED SOURCES

Current controlled voltage source (CCVS)

Iy

V.(s) =R, I(s) + OLIj(s)

Voltage controlled voltage source (VCVS)

V.(s) =R, I(s) + BR].I].(S)

12



Current controlled current source (CCCS)

V.(s) =R, I(s) + ochIj(s)

Voltage controlled current source (VCCS)

i
| o
yix
BVJ Ry Vk

V.(s) =R, I(s) + BRkRjIj(s)

13



EXAMPLE 2

R,
M-
ip(0) i3(0
22 e L — R
Ig Ré Cs = v5(0)

Graph

Current-voltage relationships

1) V() =R ()
@ V() = sL,L(s) -L,i, (0)

B)  V,(s) =sL,L(s)-L,i, (0)

14



V.(s)
V., ()
Vi (s)
V,(s)
Vi (s)
Vi (s)

o © O O O O

>N o

[\9)

o O O O

o o o ™ o o

(4)

(5)

(6)

o O O O O <O

o O o o O O

V,(s) =R, I, (s) +R4Ig(s)

1

Vi (s) = }FIS (s) +

5

v5(0)
A)

Vi (s) =R I (s) +Eg (s)

o O O O O O

15

o O O O
©c O O O

I, (s)
L,(s)
ING))
1,(s)
I,(s)
I.(s)




EXAMPLE 3

R; . )
A REER
—> i5(0)
Eg Cy== v4(0) Ré L,
+ 113(0)

Graph

Current-voltage relationships

(D) V() =R I (s) +E(s)

2 V,(s) =sL,I,(s) -L,i,(0) —sMIL(s) + Mi,(0)

16



(3)  V,(s) =sL,L(s) - L, i, (0) - sMI(s) + Mi,(0)

4 V,(s) =

. I,(s) +

v,(0)

4

(5) Vi) =R, L (s)

Pvl(s)-
V,(s)
Vi(s) | =
V,(s)
_V5(S)_
0 0 0
0 L, -M

-1 0 -M L,
0O 0 O
0 0 0

o 0o o o o

c O o O o

17
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E,(5)

o O O




EXAMPLE 4

o L1 Ly o
o ISRRAER O ST N KR O—
— -
+ R 4
Igs R3 2 Vx ng
B BVx
Graph

Current-voltage relationships

() V() =sLI(s)-Li0)+sMIL(s)-Mi(0)

@) V,(s) =sL,L(s) -L,i,(0) +sMI,(s) - Mi,(0)

18



3)

4)

(5)

V,(s) = R,I,(s) +R, I ,(s)

V() =R, (s) +BV,(s) =R, L, (s) + B R, (L (s) +1,(s5))

V, (5) = R I (5) + Ryl 5(s)

V.(s) sL,sM 0 0 0
V,(s) sM sL, 0 0 O
V)| =] 0 0 R 0 0
V,(s) 0O 0 BR, R, O
V,(s) O 0 0 O R
L, M 0 0 04O
ML 00 0]| 5O
0 0 0 0 0]|LO ]|+ %
0 0 0 0 01|
00 0 0 0 i)

19

S O O O O

1,(s)
I,(s)
1,(s)
1,(s)
1.(s)

R, 1 (s)

3783
BR,I,,(s5)
R.I _(s)

5785




LOOP AND CUTSET EQUATIONS

Basic ingredients

a) Kirchoff’s laws:

B.V(s)=0 (KVL)
I1,(s)

Q. 1(s) =0 (KCL) I(s)=|--—-
1.(s)

b) Current-voltage relationships:

V.(s) = Z.()L($) +E.(8) - Li.(0) + L v (0)
S

and, if Z'(s) exists,

1) = Z2OV© - 270 {E© ~Li0) +—v,0)



c) Additional relationships:

I(s)=B,I,(s)

and

V.(s) =0, V()

Loop Equations

[B,2,(5) B/ |1,(5) = -B,{E () ~L,i,(0) +% v,0)

Cutset Equations

0,27 ® 0/ |V,(9) = 0,2 O{E.(9)-L,i, 0+~ v,0)




EXAMPLE 1

\J

v(0) _
-
C, 1(0)
Ig % R3 Ly
b &
Graph
1
.
3
2
Network matrices
a) Cutset matrix
el 62 63 64
¢l 1 0 1 0
Q, =
ol-1 1 0 1



b) Loop matrix

Current-voltage relationships (CVR)

D) V() = —— L) + 2 v,0)
sC s

1

(2)  V,(s) =R,L(s)
3) V,(s) =R, I, (s) +R, Ig (s)

4 V,(s)=sL,I(s)-L,i,(0)



In matrix form, CVR can be expressed as

— — B 1 -— —
v I
,(5) _l o &R o0 0 »(5)
1% I
5(5) 0 0 R, O ()
14 I

Ve | 0 0 o s, |L%9]
000 0]|]uO v, (0)
00 0 0|50 11 o

- + -
0 0 0 0||i(©) s| 0
00 0 L, {0 0

Loop Equations

Left hand side

1
-1 1{]— 0 0 O
[101 }SC

01 0 -1
0 R, 0 O
0 0 R, O
0 0 0 sL,




1 0
1o 1

Right hand

-1 0 1
0 -1 O

-1
0

side

1
-1

-1

1

v,(0)
S
0
R3Ig €))
-L,i,(0)

Loop equations in final form:

sC,

-sL

4

L+R3+SL4

|

~sL

(R2 +sL4)

s || L)
L,(s)

1
(}_E;+R3+SL4) —sL4
-sL, (R2 +sL4)
v,(0)

. +R,I (5) +L,i,(0)
S |

-L,i,(0)

-L,i,(0)

+R31g(s) +L,1,(0)




Cutset Equations

Left hand side

[11

1 0
-1 1

01 O
1 01

1 O
0 1

sC

sC1 0
o L
R2

0O O

0O O

1 -1
0
1 0|
0 1
) -sC,
(sC1+_+._l._
) sL, |




Right hand side:

1 010
-1 1 0 1

1010
1101

C,v,(0)

1(s)

1.
1;14(0)

(I

0 0

0 0

1 9
R3

1

sL

L

C,v, (0) + I‘g (s)

1,(0)
s

-C,v,(0) -




Cutset equations in final form:

V3(s)
V,($)

—

Ig(s) +C v (0)

£,(0)
A)

~C,v,(0) -

16

R3 L] i1(0)
AN o ERSa R EEA o
+ V4 — .
L, aVy

Graph




Loop matrix

Current-voltage relationships (CVR)

1) V() =sL1(s)-Li0)+sMI(s)-Mi(0)
2) V,(s) =sL,1,(s)-L,i,(0) +sMI (s) -Mi (0)
3) V,(5) =R, L,(5) +E ] (s)

4 V,(s) =R, I,(s)-aR,R, L (s)

10



In matrix form, CVR can be expressed as

V.(s)
V,(s)

—

o o O O

Loop equations

Left hand side

E

0

-1
-1

sL, sM 0 0 —Il(s)
sM sL, 0 0 L,(s)
0O O R, 0 || L)
0 0 -aR,R, R, ||L(s
o |[i© ]
0 || 1,0
0 || %)
0 | Li4(0) |
1] —sLl sM 0 0
O||sMsL, 0 0O
0O O R, 0
0 0 -aR,R, R,

11




Right hand side

-1 0
0 -1

(sL, +R, +aR,R,) (sM +R, + aR,R, )

1 -1

1

0

or) (o)

~L,i,(0)-Mi,(0)
~M i, (0) ~L, i,(0) L,i, (0) + M i,(0) +E,(s)
E,(s) | Miy(0) +L, i, (0) +E,(5)
0

EXAMPLE 3 (cutset equations only)

G,
p —f—=
§R4
Oty
o <+ = MWW ©
Rs
R, '
lx
IS R K1
Ls >

12



Graph (after source transformation)

Cutset Matrix

Current-voltage relationships (CVR)

(D V() =R I (s)

1 v,(0)
@ V0 =E,0)+ V) =E©) + — L)+

2

A)

13



3) V() =sLL,(s) - L,i,(0)
(4 V() =R 1, (s) +E(s)

5) V() =R (s) +al(s)

In matrix form

vl |[BOC 0 0eTl T,
V,(s) 0 _sé_z 0 0 0 || E (s)
@O0 =10 0 sz, 0 o [[BO] | 0O
V,(s) 0 0 0 r o ||%O E,(s)
Vi) @« 0 0 or |BO] [0
(0 0 0 0 o]|hO® 0
0 0 0 0 0]|LO0 v_(0)
loorL oolli®m|+ L] o
00 0 0 0|0 1o
_O 0O 0 O 0__,'5(())J ] 0 |

14




The matrix Z,'(s) is

Cutset Equations

Left hand side

1 1 -1 10| 1
0o-1101]|]| &
0




(i +SC2+—1—+l) —(SC2+—1-)
R, sL, R, sL,
—(SC2+—1—+ a ) (SC2+—1-+i)
| sL, R/R, sL, R’
Right hand side
i 7 [ 0
0
. sC, Eg (s) +C,v_(0)
E(s) +—v.(0) 550
Qf * Ze_l (s) * ~L,i,(0) = Qf * S
E
E (s) 9
§ R
4
0
L i I 0

i,0)  E,(s) ]

sC,E,(s) +C,v,(0) + 3

;,(0)

-S C2Eg (s) -

16

-Cv,(0)

§ 4




STATE EQUATIONS

Advantages

1) Suitable for computation, since their solution does not require Laplace
transforms.

2) They can be applied to both linear and nonlinear circuits.

Format for linear circuits

x=Ax+Bu

Format for non-linear circuits

X =f(x,u)

NON-DEGENERATE CIRCUITS

Non-degenerate circuits are circuits that have no E, - C loops and
no 1, - L nodes. In this case, the state variables are all inductor currents
and all capacitor voltages.



Rules for formulating state equations

1) Place all voltage sources and capacitors info the tree.

2) Place all current source and inductors out of the tree.

3) Write KCL for all fundamental cutsets involving capacitors.
4) Write KVL for all fundamental loops involving inductors.

5) If any non-state variables appear on the right hand side, write
additional KCL and KVL equations to eliminate them.

EXAMPLE 1

Graph



The basic KCL and KVL equations are

-i +i, +i, =0
¢ R L

sz—Eg +v64=0

In differential form :

2

—=-v_+E
. 8

To eliminate i;,, we need an additional KVL equation




The state equations in matrix form are

v, | |1 1 1
dt C4R1 C4 Ve, C4R1
= + E
di L _i 0 iy i ¢
Lar 1| L | L
EXAMPLE 2

Graph




The basic KCL and KVL equations are

In differential form :




Ve~V tE v, =0 = = R;
E Eg -V,
Vp LB, +V, = = I = :
R3 Cs R3 R3
The state equations in matrix form are
dv, (1,1 J 1
dt _ C.R, C,R, C.R, Ve,
dv, 1 1 1 Ve
6 - — + 6
| dt | | C.R, CsR, CR, )|
(1 1 )
\ C4R1 C4R2 )
+ E
\CR;  CR, )



EXAMPLE 3

Graph

The basic KCL and KVL equations are



To eliminate vg,;, we need an additional KCL equation

—lp+ I +,=0 = vR3=R3(le+zL2)

Observing that there are coupled inductors in this circuit, we also
have

v =L _* +M_2
Lo Vg dt

I di2 Mdz1
V = — + —_—
L2 gy dt

dvs
C, 0 0 d.t O 0 1 v, 0
0 L M 1 | o R, -R, i |+|1|E
0 ML a -1 -R, -R il 1 g
i 2 1| di, | L | S I
R



Note that in this case the state equations have the form

Px =Ax +Bu
which can be reduced to the previous form as

¥=P'Ax +P'Bu

DEGENERATE CIRCUITS

EXAMPLE 4

This circuit has a loop containing only capacitors C,, C, and C,,
and is therefore degenerate. As a result, one of the capacitor
voltages is not independent and should not be a state variable. In
this example, we will treat C, as if it were a resistor (that is, we
will not require that it belongs to the tree). To eliminate v, we

9



will use the relationship

Graph

The basic KCL and KVL equations are

e i oad .
fy ¥l *1, +ip +i 0

3 6 4 2
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To eliminate iy,, iz, and igs, we use KVL equations

(1) Ve, =V,
(2) Vg =V, ~V,
3 v, =v

Note also that i, can be eliminated as

dv

: c d
i =C . =C,—(v. -v
c, 2 dt 2 dt( C c.,)
The state equations in matrix form are
- Wl ] | (11 1
(CZ + Cé) —CZ dt R4 R3 R4 vc5
_C2 (C2 + C7) dvc7 i - i + _1_ vc7
) | L odt A R, R, R

11



EXAMPLE §

In this circuit there is one loop involving only E,, C, and C, and
one node invloving only I,, L, and L,. We have degeneracy of
degree two, so our state variables will be only v, and i, ,.

The degenerate loops and cutsets give us

vC=Eg—vC

1 6

Therefore, we can eliminate i, and v;, as
. d
lCl - Cl E (Eg - VCG)

d . . .
v, = L4E(lg —sz)

12



Graph

dv, dE
(Cra)g i e
diL di

(L L) 7 = gt
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Note that here we have an even more general format for state
equations

Px =Ax+Bu+Fu

This type of situation can arise only in degenerate circuits.
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