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Lecture Notes for Week 9

Sparse Matrices

As we already mentioned, direct methods are primarily used in cases when matrix A is sparse
(i.e. when the overwhelming majority of its elements are zero). Matrices of this sort are
commonly encountered in engineering problems, because the number of physical connections
between different system components is usually very limited. As a result, any given equation
will typically involve only a few variables (even if the system size is very large).

We will now examine sparse matrices in some detail, and consider how their structure
can be expoited to create efficient parallel algorithms.

Storage Techniques and Symbolic Factorization

One of the advantages of working with sparse matrices stems from the fact that we only need
to store their nonzero elements. As a result, the necessary memory resources are usually quite
modest. Although manipulating such matrices requires a certain amount of overhead (in the
form of additional pointers and data structures), the added effort is clearly beneficial, since
storing an entire n× n array can be very inefficient when n is large. We will not discuss the
various techniques that were developed for this purpose at this point, but a brief overview
is provided in the textbook.

Since we are primarily interested in solving system

Ax = b (1)

using LU factorization, one of the biggest challenges that we must address is the fact that
matrices L and U needn’t necessarily be sparse (even if A itself is). Since the computational
benefits of sparsity would be largely lost under such circumstances, it is necessary to develop
methods that can minimize the number of nonzeros in L and U .

To see how this can be done, let us once again consider the “mechanics” of LU factor-
ization, this time with the added assumption that matrix A is stucturally symmetric (which
means that akj 6= 0 if and only if ajk 6= 0). The approach that we will take in the following
is somewhat different from the one we described previously, and is better suited for sparse
matrices because it allows us to monitor the number and location of the additional nonzeros.
Example 1 illustrates some of its main features.

Example 1. Consider the matrix

A =

 5 1 2
1 4 1
2 2 5

 (2)

and suppose that we wish to compute its factors

L =

 l11 0 0
l21 l22 0
l31 l32 l33

 (3)
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and

U =

 u11 u12 u13
0 u22 u23
0 0 u33

 (4)

As before, we will assume that l11 = l22 = l33 = 1, since the factorization is not unique. We
now proceed to compute the elements of L and U in a step-by-step manner, starting with
the first row of U and the first column of L.

STEP 1. To compute the first row of U , we will make use of the fact that

5 = a11 = l11u11 =⇒ u11 = 5

1 = a12 = l11u12 =⇒ u12 = 1

2 = a13 = l11u13 =⇒ u13 = 2

(5)

We can now utilize the value that we obtained for u11 to determine the first column of L as

1 = a21 = l21u11 = 5l21 =⇒ l21 = 0.2

2 = a31 = l31u11 = 5l31 =⇒ l31 = 0.4
(6)

After this step is completed, matrices L and U will have the form

L =

 1 0 0
0.2 l22 0
0.4 l32 l33

 (7)

and

U =

 5 1 2
0 u22 u23
0 0 u33

 (8)

It is important to recognize at this point that the first row of U matches the first row of
A exactly, and therefore has the same nonzero pattern. This holds true for the first column
of L as well, since

lk1 = ak1/u11 (9)

As a result, ak1 6= 0 obviously implies lk1 6= 0.
This seemingly trivial observation will turn out to be very important, because it will

allow us to anticipate the number of nonzero elements in matrices L and U without actually
computing them. Such a procedure is known as symbolic factorization, and its benefits will
be illustrated in subsequent examples.

STEP 2. In order to determine the second row of U and second column of L, we should
observe that

a22 = l21u12 + l22u22

a23 = l21u13 + l22u23

a32 = l31u12 + l32u22

a33 = l31u13 + l32u23 + l33u33

(10)
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Since we already know the terms on the right hand side that are associated with the first
row of U (u12 and u13) and first column of L (l21 and l31), it makes sense to group them
together with a22, a23, a32 and a33 (which are given). If we do so, (10) becomes

l22u22 = a22 − l21u12
l22u23 = a23 − l21u13
l32u22 = a32 − l31u12
l32u23 + l33u33 = a33 − l31u13

(11)

where all the unknown terms are on the left hand side.
Let us now define matrix

W1 =

[
l21u12 l21u13
l31u12 l31u13

]
(12)

which is formed from the off-diagonal elements in column 1 of L and row 1 of U . It is not
difficult to see that this matrix can be equivalently represented as

W1 =

[
l21
l31

]
·
[
u12 u13

]
(13)

which will be more convenient for our purposes. The reason for introducing matrix W1 is
that it allows us to express the right hand side of (11) in matrix form as[

(a22 − l21u12) (a23 − l21u13)
(a32 − l31u12) (a33 − l31u13)

]
= F1 −W1 (14)

where

F1 =

[
a22 a23
a32 a33

]
(15)

Setting

A2 =

[
l22u22 l22u33
l32u22 l32u23 + l33u33

]
=

[
l22 0
l32 l33

]
·
[
u22 u23
0 u33

]
(16)

we can now rewrite (11) as
A2 = F1 −W1 (17)

Expression (17) tells us that the remaining elements of L and U can be computed by
factorizing matrix A2, which is known at this point. For the sake of clarity, in the following
we will denote the elements of this matrix as

A2 =

[
a
(2)
22 a

(2)
23

a
(2)
32 a

(2)
33

]
(18)

to emphasize the fact that they differ from the original elements a22, a23, a32, and a33.
The simple transformation described above reduces the problem to factorizing a matrix

that is smaller than the original one. Given that

F1 =

[
4 1
2 5

]
(19)
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this matrix has the form

A2 = F1 −W1 =

[
4 1
2 5

]
−
[

0.2
0.4

]
·
[

1 2
]

=

[
3.8 0.6
1.6 4.2

]
(20)

We can now perform Step 1 on A2 to compute the second row of U and the second column
of L. If we follow the same procedure as before, we obtain

u22 = a
(2)
22 = 3.8

u23 = a
(2)
23 = 0.6

(21)

and
l22 = 1

l32 = a
(2)
32 /u22 = 1.6/3.8 = 0.421

(22)

STEP 3. After Step 2 has been completed, L and U become

L =

 1 0 0
0.2 1 0
0.4 0.421 l33

 (23)

and

U =

 5 1 2
0 3.8 0.6
0 0 u33

 (24)

respectively. The only element that remains to be computed at his point is u33 (since l33 = 1

by assumption). In order to do that, we should recall that a
(2)
33 = a33 − l31u13 (this follows

directly from equation (14), (17) ad (18)). With that in mind, we can rewrite the last
equation in (10) as

l33u33 = a33 − l31u13 − l32u23 = a
(2)
33 − l32u23 (25)

Setting F2 = a
(2)
33 and W2 = l32u23, we can determine u33 by factorizing matrix

A3 = F2 −W2 = a
(2)
33 − l32u23 = 4.2− 0.421 · 0.6 = 3.947 (26)

This is obviously a 1× 1 matrix whose factorization has the form

A3 = l33u33 (27)

Recalling that l33 = 1, we now easily obtain u33 = 3.947, and matrices L and U assume their
final form

L =

 1 0 0
0.2 1 0
0.4 0.421 1

 (28)

and

U =

 5 1 2
0 3.8 0.6
0 0 3.947

 (29)
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One of the most important features of the algorithm that we just described is that fact
that it recursively applies Step 1 to matrices A2, A3, etc. In each stage of this process, the
matrix size is reduced by 1, and Ak+1 can be computed as

Ak+1 = Fk − lk · uk (30)

where

lk =


lk+1,k

lk+2,k
...
ln,k

 (31)

and
uk =

[
uk,k+1 uk,k+2 · · · uk,n

]
(32)

represent the off-diagonal elements in column k of matrix L and row k of matrix U .
To see why this is useful, suppose that we have performed k steps of the factorization,

and are now in the process of computing matrix Ak+1. In general, this matrix will have
more nonzeros than matrix Ak, since the product lk · uk can add new elements to Fk. What
is less obvious (but equally important) is that we can predict their number and location
directly from the structure of lk and uk without actually computing their values. We will see
that this procedure (which is known as symbolic factorization) is an essential part of several
algorithms for sparsity preservation.

The diagram in Fig. 1 indicates how symbolic factorization works if lk has nonzeros in
rows i, j and m (note that uk will have the same nonzero pattern, since A is assumed to be
structurally symmetric).

*** *

*** *

*** *

*** *

k i j m

k

i

j

m

} uk

}

lk

Figure 1: A schematic representation of symbolic factorization.

It is not difficult to see that the product lk ·uk introduces new elements in locations (i, i),
(i, j), (i,m), (j, i), (j, j), (j,m), (m, i), (m, j), and (m,m). Some of these elements will be

5



nonzeros in Ak+1, even though their value was zero in matrix Ak. For this reason, they are
commonly referred to as “fill-ins”, and minimizing their number is critical for preserving
sparsity.

The following example illustrates why fill-in reduction is so important in solving systems
of linear equations.

Example 2. Consider the matrix

A =


∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0
∗ 0 ∗ 0 0
∗ 0 0 ∗ 0
∗ 0 0 0 ∗

 (33)

whose nonzero elements are indicated by ∗. After the first step of LU factorization, we obtain

A2 = F1 − l1 · u1 (34)

where

F1 =


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 (35)

and l1 and u1 have the structure

l1 =


∗
∗
∗
∗

 (36)

and
u1 =

[
∗ ∗ ∗ ∗

]
(37)

(since they must match the nonzero pattern of row 1 and column 1 of A).
Given that the product l1 · u1 gives rise to a full 4× 4 matrix, the nonzero pattern of A2

will be

A2 =


∗ � � �
� ∗ � �
� � ∗ �
� � � ∗

 (38)

where the symbol � denotes fill-ins. This implies that L and U will have the form

L =


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ � ∗ 0 0
∗ � � ∗ 0
∗ � � � ∗

 (39)

and

U =


∗ ∗ ∗ ∗ ∗
0 ∗ � � �
0 0 ∗ � �
0 0 0 ∗ �
0 0 0 0 ∗

 (40)
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It is not difficult to see that all elements that were zero in matrix A are now nonzeros in L
and U . We can therefore conclude that the original sparsity of A is completely lost in the
factorization process.

What can be done to mitigate this problem, and reduce the accumulation of fill-in ele-
ments? The following example illustrates a simple idea that we will develop further once we
introduce the concept of an elimination graph.

Example 3. Suppose that we permute the matrix given in (33) by swapping rows 1 and
5 (and doing the same with columns 1 and 5). Such a permutation is said to be symmetric,
and can be described by a single permutation vector p = [5 2 3 4 1]. The resulting matrix
will then have the form

Ã =


∗ 0 0 0 ∗
0 ∗ 0 0 ∗
0 0 ∗ 0 ∗
0 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗

 (41)

and the first step of LU factorization will produce

Ã2 = F̃1 − l1 · u1 (42)

where

F̃1 =


∗ 0 0 ∗
0 ∗ 0 ∗
0 0 ∗ ∗
∗ ∗ ∗ ∗

 (43)

and l1 and u1 have the form

l1 =


0
0
0
∗

 (44)

and
u1 =

[
0 0 0 ∗

]
(45)

respectively. Since

Ã2 = F̃1 − l1 · u1 =


∗ 0 0 ∗
0 ∗ 0 ∗
0 0 ∗ ∗
∗ ∗ ∗ ∗

−


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∗

 (46)

it follows that matrices Ã2 and F̃1 will have the same nonzero pattern (although one of their
elements will have different values).

If we now execute the remaining steps in this process, it is easily verified that the factor-
ization produces no fill-ins at all, and that matrices L and U will have the form

L =


∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0
∗ ∗ ∗ ∗ ∗

 (47)
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and

U =


∗ 0 0 0 ∗
0 ∗ 0 0 ∗
0 0 ∗ 0 ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

 (48)

This suggests that an appropriately chosen permutation can help preserve the sparsity of the
original matrix, and can dramatically reduce the number of operations needed to compute
matrices L and U . We will now explain how such a permutation can be found.

Elimination Graphs

Algorithms for symbolic factorization rely on the fact that any structurally symmetric matrix
A can be uniquely associated with an undirected graph in which vertices i and j are connected
if and only if aij 6= 0 (which automatically implies aji 6= 0 as well). In such a graph, edges
will obviously correspond to nonzero elements.

The following example illustrates how this idea can be applied to monitor fill-in accu-
mulation in the process of LU factorization. Since the graph changes in each step, it is
commonly referred to as an elimination graph.

Example 4. Consider a matrix A whose nonzero structure is

A =


∗ ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗
∗ 0 ∗ 0 0
∗ 0 0 ∗ 0
0 ∗ 0 0 ∗

 (49)

This matrix can be represented as an undirected graph in the manner shown in Fig. 2. Since
the first column of matrix L and the first row of matrix U have exactly the same nonzero
pattern as matrix A, vectors l1 and u1 will have the form

l1 =


∗
∗
∗
0

 (50)

and
u1 =

[
∗ ∗ ∗ 0

]
(51)

respectively.
Observing that

F1 =


∗ 0 0 ∗
0 ∗ 0 0
0 0 ∗ 0
∗ 0 0 ∗

 (52)
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1

2

5

4

3

Figure 2: Graph that corresponds to the matrix in (49).

it follows that

A2 = F1 − l1 · u1 =


∗ � � ∗
� ∗ � 0
� � ∗ 0
∗ 0 0 ∗

 (53)

The graph that corresponds to matrix A2 is shown in Fig. 3, in which the dashed lines
represent the fill-ins that have been added in this step.

2

5

4

3

Figure 3: The graph that corresponds to matrix A2.

It is important to recognize, however, that we could have obtained this graph without
actually forming matrix A2. We could have done so by utilizing the fact that all three
neighbors of node 1 (which are nodes 2, 3 and 4) become pairwise connected after the
product l1 · u1 is subtracted from matrix F1. This would allow us to form the graph that
corresponds to A2 by eliminating node 1, removing all edges that are incident to it, and
connecting all of its neighbors. Any new edges that arise in this process constitute fill-ins,
and are indicated by dashed lines (in this case, the fill-ins are (2, 3), (2, 4) and (3, 4)).
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If we adopt this procedure for monitoring fill-in, our next step should start with the graph
in Fig. 3 (which corresponds to A2).We can then form matrix A3 by eliminating node 2 and
removing all the edges that are incident to it. After connecting all of its neighbors (which
happen to be nodes 3, 4 and 5), we obtain the graph shown in Fig. 4, in which the dashed
lines once again indicate fill-ins (these elements occur in positions (3, 5) and (4, 5)).

5

43

Figure 4: The graph after eliminating node 2.

In the graph that correspond to A3, nodes 4 and 5 (which are the neighbors of node 3)
are already connected. As a result, removing node 3 produces the graph shown in Fig. 5, in
which there are no dashed lines. This indicates that no fill-ins were created in the current
step.

5

4

Figure 5: The graph after eliminating node 3.

In the final step, we need to remove node 4 and all of its incident edges, which leaves us
with node 5. Given that this was the only neighbor of node 4, there is nothing to connect at
this point, and there are no new fill-ins. We can therefore conclude that L and U will have
the form

L =


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ � ∗ 0 0
∗ � � ∗ 0
0 ∗ � � ∗

 (54)
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and

U =


∗ ∗ ∗ ∗ 0
0 ∗ � � ∗
0 0 ∗ � �
0 0 0 ∗ �
0 0 0 0 ∗

 (55)

The following example (which features a somewhat larger matrix) further underscores
the practical value of using elimination graphs for monitoring the number and location of
fill-in elements in matrices L and U .

Example 5. Consider the matrix

A =



∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0 0 0
∗ 0 ∗ 0 ∗ ∗ 0 0
∗ 0 0 ∗ 0 0 0 0
0 0 ∗ 0 ∗ 0 ∗ 0
0 0 ∗ 0 0 ∗ 0 0
0 0 0 0 ∗ 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗


(56)

whose graph-theoretic representation is provided in Fig. 6. If we proceed to eliminate the
nodes in ascending order, the elimination graph will evolve in the manner shown in Figs.
7-12. From these figures, we can easily conclude that matrices L and U have the form

L =



∗ 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0
∗ � ∗ 0 0 0 0 0
∗ � � ∗ 0 0 0 0
0 0 ∗ � ∗ 0 0 0
0 0 ∗ � � ∗ 0 0
0 0 0 0 ∗ � ∗ 0
0 0 0 0 0 0 ∗ ∗


(57)

and

U =



∗ ∗ ∗ ∗ 0 0 0 0
0 ∗ � � 0 0 0 0
0 0 ∗ � ∗ ∗ 0 0
0 0 0 ∗ � � 0 0
0 0 0 0 ∗ � ∗ 0
0 0 0 0 0 ∗ � 0
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 ∗


(58)

with 7 fill-in elements in each case.
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Figure 6: The graph that corresponds to the matrix in (56).

4 2

5

3

6

7

8

Figure 7: Graph after removing node 1 (its neighbors are {2, 3, 4}). New fill-ins are (2, 3),
(2, 4) and (3, 4).
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4

5

3 6

7

8

Figure 8: Graph after removing node 2 (its neighbors are {3, 4}). No new fill-ins.

4

5

6

7

8

Figure 9: Graph after removing node 3 (its neighbors are {4, 5, 6}). New fill-ins are (4, 5),
(4, 6) and (5, 6).

5

6

7

8

Figure 10: Graph after removing node 4 (its neighbors are {5, 6}). No new fill-ins.
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6

7

8

Figure 11: Graph after removing node 5 (its neighbors are {6, 7}). New fill-ins: (6, 7).

7

8

Figure 12: Graph after removing node 6 (its neighbor is {7}). No new fill-ins.

The Minimal Degree Ordering

The minimal degree ordering is one of the most successful techniques for reducing fill-in
that arises in the process of LU factorization. This approach utilizes elimination graphs and
the procedure outlined in Examples 4 and 5 to systematically identify a sparsity-preserving
permutation of matrix A.

To see how this can be done, we should first observe that fill-ins are more likely to appear
if the node that we are eliminating has a large number of neighbors. It therefore makes sense
to eliminate the node that has the smallest degree in any given step (instead of eliminating
them in ascending order). In the case of a tie, we will always choose the lowest numbered
node (for the sake of simplicity). This approach isn’t necessarily optimal but is easy to
implement, which gives it certain practical advantages.

The following example (which involves the same matrix that we considered in Example
5) illustrates the effectiveness of such a strategy.

Example 6. Since we will be working with matrix (56) one again, our starting point will
be the graph shown in Fig. 6. Although nodes 2, 4, 6 and 8 have the same degree in this
graph, the tie breaking criterion that we adopted identifies node 2 as the one that should be
removed first. The resulting graph is shown in Fig. 13, and subsequent stages of this process
are described in Figs. 14-18.

The order in which the nodes were eliminated uniquely defines a permutation that reduces
fill-in. In this particular case the corresponding permutation vector

p =
[

2 4 1 6 3 5 7 8
]

(59)
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Figure 13: Graph after removing node 2 (its neighbor is {1}). No new fill-ins.

1

5

6

7

8

3

Figure 14: Graph after removing node 4 (its neighbor is {1}). No new fill-ins.
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6

5

3

7

8

Figure 15: Graph after removing node 6 (its neighbor is {3}). No new fill-ins.

5

3

7

8

Figure 16: Graph after removing node 1 (its neighbor is {3}). No new fill-ins.

5

7

8

Figure 17: Graph after removing node 3 (its neighbor is {5}). No new fill-ins.

7

8

Figure 18: Graph after removing node 5 (its neighbor is {7}). No new fill-ins.
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tells us precisely how the rows and columns of matrix A should be rearranged. When we
do so, we obtain a matrix Ã whose structure is

Ã =



∗ 0 0 ∗ 0 0 0 0
0 ∗ 0 ∗ 0 0 0 0
0 0 ∗ 0 ∗ 0 0 0
∗ ∗ 0 ∗ ∗ 0 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗


(60)

Figures 13-18 indicate that factorizing this matrix produces no fill-in at all, which means
that L and U will have the same nonzero pattern as the lower and upper triangular parts of
Ã. This is a significant improvement over the result that we obtained in Example 5, where
matrix A was not permuted (in that case, we had a total of 14 fill-in elements).

It goes without saying, of course, that fill-in can rarely be completely eliminated in
practical problems, even if the original matrix is very sparse. Nevertheless, this example
nicely illustrates how a simple reordering scheme can drastically reduce the computational
effort needed to solve systems of linear equations.
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Decomposition Algorithms

Although the minimal degree ordering is very effective when it comes to minimizing the
amount of fill-in, the permuted matrix that it produces usually lacks structure. As a result,
there is no obvious way to parallelize the computation of matrices L and U . With that in
mind, in this section we will consider an alternative approach which reorders the matrix into
a bordered block diagonal (BBD) form (like the one shown in Fig. 19).

A11

A22

Akm

A2m

A1m

Akk

Am1 Am2 Amk Amm

Figure 19: A matrix with a BBD structure.

To get a sense for why the BBD form is suitable for parallelization, we should first observe
that matrices L and U which correspond to it have the form shown in Figs. 20 and 21.

L11

L22

Lkk

Lm1 Lm2 Lmk Lmm

Figure 20: The structure of matrix L.
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U11

U22

Umm

Ukm

U2m

U1m

Ukk

Figure 21: The structure of matrix U .

If we multiply these two matrices, it is easily verified that the blocks of A can be expressed
as

Akk = LkkUkk (61)

Akm = LkkUkm (62)

and
Amk = LmkUkk (63)

for k = 1, 2, . . . ,m− 1. The only block that does not conform to this simple pattern is Amm,
since it corresponds to the sum

Amm =
m∑

k=1

LmkUkm (64)

Expression (61) indicates that Lkk and Ukk can be computed by factorizing matrix Akk.
Once Lkk and Ukk are known, Ukm can be determined by solving the system

LkkUkm = Akm (65)

This is not difficult to do, since (65) represents a collection of equations of the form

Lkkui = ai (66)

where ui and ai represent the i-th columns of matrices Ukm and Akm, respectively.
A similar procedure can be used to compute matrix Lmk as well, since

Amk = LmkUkk (67)

The only modification that needs to be made in this case involves rewriting expression (67)
as

UT
kkL

T
mk = AT

mk (68)
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This allows us to determine matrix Lmk by solving multiple systems of the form

UT
kkxi = wi (69)

where xi and wi denote columns of matrices LT
mk and AT

mk, respectively.
If we assume that processor k stores matrices Akk, Akm and Amk in its local memory,

it is obvious that it can compute Lkk, Ukk, Ukm and Lmk independently. As a result, all
the blocks of L and U except for Lmm and Umm can be obtained in parallel. To see how
these last two matrices can be determined, we should observe that processor k can also form
the product LmkUkm, and send it to processor m. If these terms are added along the way
(using an algorithm similar to the one that we discussed in the context of scalar products),
processor m will receive matrix

Sm =
m−1∑
k=1

LmkUkm (70)

This matrix is needed in the final step of the factorization, because equation (64) indicates
that Amm can be expressed as

Amm = LmmUmm + Sm (71)

As a result, processor m can compute Lmm and Umm by factorizing matrix Ãmm = Amm−Sm.
This type of parallelism has some major advantages, because it allows us to specify the

computational tasks that each processor will perfom ahead of time. It also minimizes the
communication overhead, since processors have to exchange information only in the final
step of the factorization. In that respect, BBD decompositions have a decided advantage
over the minimal degree ordering.

In the remainder of this section, we will consider two techniques that are capable of
producing BBD structures. It should be noted that each of them can be combined with the
minimal degree ordering, in the sense that the diagonal blocks can be internally permuted
to minimize fill-in.

Nested Dissection

The nested dissection method is one of the first algorithms that was developed for permuting
sparse matrices into the BBD form. It is simple to implement and tends to work well for
matrices that exhibit some form of regularity in their nonzero pattern. We will see, however,
that it is not as effective when matrix A has an irregular structure (which is typical for
electric circuits, for example).

In order to describe how this algorithm works, we first need to introduce several definitions
from graph theory.

Definition 1. The eccentricity of node x in a graph (which is denoted by l(x)) represents
the maximal distance between x and any other node in the graph.

Definition 2. The diameter of graph G (denoted δ(G)) is the maximal distance between
any two nodes in G. In light of Definition 1, this quantity can be described as

δ(G) = max
x∈G

l(x) (72)
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Definition 3. Node x is said to be a peripheral node in graph G if l(x) = δ(G).

Since finding peripheral nodes in a large graph can be a difficult task in general, the
nested dissection algorithm focuses on a simpler problem, and searches instead for a node
whose eccentricity is as large as possible. Such a node is said to be pseudo-peripheral, and
the following example illustrates how it can be identified.

Example 7. Consider the 8× 8 matrix

A =



∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 ∗ 0 0 0
0 ∗ ∗ ∗ ∗ 0 0 0
0 0 ∗ ∗ ∗ 0 ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ 0
0 0 0 0 ∗ ∗ ∗ 0
0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ 0 0 ∗ ∗


(73)

whose graph-theoretic representation is shown in Fig. 22.

x1

x2 x3 x4 x8

x5

x6

x7

Figure 22: The graph that corresponds to the matrix in (73).

We will start by randomly choosing a node xR, and grouping all the other nodes in the
graph into different levels, based on their distance from xR. If we choose xR = x3, for
example, we obtain the structure shown in Fig. 23 (which is commonly referred to as a
rooted level structure). In this diagram, the lines that connect different levels represent a
subset of edges from the original graph.

If we take a closer look at Fig. 23, we will observe that x3 is not a good candidate for a
pseudo-peripheral node, since its distance to any other node in the graph is no larger than
2. We therefore need to perform another iteration, starting from the node in the last level
which has the lowest degree. In our example, this happens to be x1, and the level structure
that is rooted at this node is shown in Fig. 24.
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Figure 23: The level structure rooted at x3.
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Figure 24: The level structure rooted at x1.

In order to optimize the BBD structure, this process should continue until the number
of levels stops increasing. It is easily verified that this occurs when we form a level structure
rooted at node x8 (since it has as many levels as the one that is rooted at node x1). At this
point, we can claim that we have found a pseudo-peripheral node, which could be either x1
or x8.

Once such a node is identified, the nested dissection algorithm proposes that we remove
the middle level of the structure, together with all the links that connect it to other levels
(this level is shaded gray in Fig. 24). When we do so, we obtain two disconnected subgraphs
(which consist of nodes {x1, x2} and {x4, x6, x7, x8}, respectively), and a separator whose
elements are nodes {x3, x5}. This tells us that a permutation defined by vector

p =
[

1 2 4 6 7 8 3 5
]

(74)
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will produce a BBD matrix whose structure is

Ã =



∗ ∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 ∗ ∗
0 0 ∗ 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0 0 ∗
0 0 ∗ ∗ ∗ ∗ 0 ∗
0 0 ∗ 0 ∗ ∗ 0 0
0 ∗ ∗ 0 0 0 ∗ ∗
0 ∗ ∗ ∗ ∗ 0 ∗ ∗


(75)

In this matrix, the separator obviously corresponds to the border.

Example 7 suggests that the nested dissection algorithm doesn’t necessarily produce di-
agonal blocks of equal (or even similar) sizes. This is clearly undesirable from the standpoint
of parallel computing, since it could result in poor load balancing (particularly if the dis-
crepancy is significant). We should also bear in mind that this decomposition can be applied
recursively to the diagonal blocks, which results in a nested structure such as the one shown
in Fig. 25. This type of ordering is suitable when the matrix is large, but the parallelization
is somewhat more complicated to implement, since it requires a hierarchical distribution of
tasks across the processors.

Figure 25: A nested BBD structure.

As noted earlier, we can reduce fill-in in BBD structures by permuting each diagonal
block internally (typically, using the minimal degree method). This is not so easy to do with
last diagonal block, however, because matrix Ãmm = Amm−Sm is generally not sparse (due
to the way Sm is formed). One way to deal with this problem is to minimize the size of the
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border as much as possible, since that would reduce the dimensions of matrix Ãmm. If we
manage to make this matrix sufficiently small, its factorization won’t be too time consuming
even if all of its elements had nonzero values.

The nested dissection algorithm can minimize the border quite effectively for orderly
configurations, but it doesn’t work as well for other types of matrices. The following example
amplifies this point, and illustrates the limitations of this approach.

Example 8. Consider the graph shown in Fig. 26, which corresponds to a sparse matrix
of dimension 28× 28. The level structure that is produced by selecting node x1 as the root
is shown in Fig. 27.
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Figure 26: Graph of an unstructured sparse matrix.

If we follow the nested dissection algorithm to the letter and remove the middle level from
this structure, we will obtain two diagonal blocks of dimensions 9×9 and 14×14, respectively,
and a border block of size 4×4 (which corresponds to vertices {x10, x11, x12, x13}). It is readily
observed, however, that we could get a better BBD structure by removing only vertex x14,
in which case we would have diagonal blocks of dimensions 13×13 and 14×14, and a border
block of size 1×1. This would clearly result in a more efficient parallelization, but the nested
dissection algorithm would not be able to produce such a decomposition.

Spectral Partitioning Methods

Spectral partitioning methods are based on the eigenvalues and eigenvectors of matrices
that are used to represent undirected graphs. One of the most commonly used matrices for
this purpose is the so-called Laplacian of graph G, whose description relies on the following
definition.
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Definition 4. The adjacency matrix M that is associated with graph G has zeros on its
diagonal, and its off-diagonal entries satisfy

mij =

{
1 if vertices xi and xj are connected
0 if vertices xi and xj are not connected

(76)

The Laplacian of G (which we will denote by Q) is related to the incidence matrix as

Q = D −M (77)

where D is a diagonal matrix in which dii represents the degree of node i.
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Figure 27: The level structure rooted at x1.

Since matrix Q is symmetric by construction, its eigenvalues must be real (see Theorem
1.1 for a proof of this property). It can also be shown that all of these eigenvalues satisfy
λi ≥ 0, and that at least one of them equals zero. With that in mind, in the following we
will denote the smallest positive eigenvalue of Q by λm and the corresponding eigenvector
by Xm. Using this notation, the decomposition algorithm can be described as a sequence of
four steps.

STEP 1. Compute eigenvector Xm = [x1 x2 . . . xn]T , and determine its median component
(which we will denote by xl).

STEP 2. Partition the vertices of graph G into two sets, A and B, so that vertex i ∈ A
if xi > xl and i ∈ B otherwise. Given that xl is the median component of Xm, this ensures
that sets A and B will have approximately the same size.
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STEP 3. Find the minimal set of vertices in the graph whose removal will eliminate all
edges that connect sets A and B. This set represents the separator.

STEP 4. Once the separator is removed, repeat Steps 1 - 3 on the remaining components
as many times as necessary.

One of the advantages of this algorithm is that it guarantees similar block sizes, which
ensures good load balancing. This approach also produces small borders, since it is designed
to minimize the size of the separator. The following example further illustrates this point,
and demonstrates how the algorithm works in practice.

Example 9. Consider a 9× 9 matrix whose nonzero pattern is

A =



∗ 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ ∗ ∗ ∗ 0 0
∗ 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ ∗ 0 0 0 ∗
0 ∗ 0 ∗ ∗ 0 0 0 ∗
0 ∗ 0 0 0 ∗ 0 0 ∗
∗ ∗ ∗ 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 ∗ ∗ 0
0 0 0 ∗ ∗ ∗ 0 0 ∗


(78)

The graph that corresponds to this matrix is shown in Fig. 28.
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Figure 28: Graph that corresponds to the matrix in (78).

From this graph, we easily obtain the Laplacian matrix as

Q = D −M =



2 0 −1 0 0 0 −1 0 0
0 4 0 −1 −1 −1 −1 0 0
−1 0 2 0 0 0 −1 0 0

0 −1 0 3 −1 0 0 0 −1
0 −1 0 −1 3 0 0 0 −1
0 −1 0 0 0 2 0 0 −1
−1 −1 −1 0 0 0 4 −1 0

0 0 0 0 0 0 −1 1 0
0 0 0 −1 −1 −1 0 0 3


(79)
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The smallest nonzero eigenvalue of Q is λm = 0.30969, and the corresponding eigenvector is

Xm =
[

4.0 −1.8 4.0 −3.1 −3.1 −3.1 2.8 4.0 −3.5
]T

(80)

(for the sake of simplicty, the components of Xm have been rounded off to a single decimal).
It is not difficult to see that the median component of Xm is xl = −1.8. According to

the algorithm, sets A and B will then be A = {x1, x3, x7, x8} and B = {x2, x4, x5, x6, x9},
respectively. If we now group the nodes in the manner shown in Fig. 29 (which corresponds
to the partitioning defined by sets A and B), it becomes apparent that removing edge (2, 7)
will result in two disconnected graphs.

Figure 29: The partitioned graph.

The simplest way to accomplish this is to eliminate node x2 (and all its incident edges).
This means that x2 should be the separator, and that the permutation vector should be

p =
[

1 3 7 8 4 5 6 9 2
]

(81)

When we apply this permutation to matrix A, we obtain a BBD structure of the form

Ã =



∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 ∗
0 0 ∗ ∗ 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 ∗ ∗ 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ 0
0 0 ∗ 0 ∗ ∗ ∗ 0 ∗


(82)

Note that the diagonal blocks are balanced in size (both have dimension 4× 4), and that
the border is as small as it can possibly be.

Remark 1. When analyzing the relative merits of this algorithm, it is important to
keep in mind that calculating eigenvectors and eigenvalues can pose some major challenges
when the matrix is large. It is therefore worth exploring alternative strategies that require
less computation (and are therefore easier to implement). One such possibility is described
in the textbook.
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Epsilon Decomposition

Epsilon decomposition is a technique that is not limited to sparse matrices (or structurally
symmetric matrices, for that matter). As such, it is more general, and can be used in cases
when the other methods that we discussed so far do not apply. The basic idea behind this
approach is very simple - all we need to do is choose a positive number ε, and then eliminate
all elements in the matrix whose magnitude is no larger than this value. Since this inevitable
“sparsifies” the original matrix, there is a good chance that it can be permuted into a block
diagonal form for certain values of ε.

To see why such a decomposition is desirable when it comes to solving system

Ax = b (83)

iteratively, we should first recall that this process can be described as

x(k + 1) = Gx(k) + ξ (84)

where

G = I −Q−1A (85)

and

ξ = Q−1b (86)

We previously established that sequence {x(k)} will converge to the solution of equation
(83) if ρ(G) < 1. Because ρ(G) ≤ ‖G‖ for any choice of norm, convergence can also be
guaranteed whenever ‖G‖ < 1 (see Lemma 10.1 for a proof of this property).

Epsilon decomposition can help us satisfy this condition because it allows us to express
matrix A as

A = AD + εAC (87)

where AD is block diagonal, and all the elements of AC have magnitudes that are no larger
than 1. If we choose matrix Q as

Q = AD (88)

we obtain
G = I −Q−1A = I − A−1D (AD + εAC) = εA−1D AC (89)

Given that
‖G‖ = ε

∥∥A−1D AC

∥∥ (90)

it is readily observed that G will satisfy ‖G‖ < 1 when ε is sufficiently small. This will not
only ensure convergence, but can also significantly accelerate it in some cases.

The following example illustrates how epsilon decomposition works in practice.

Example 10. Consider the matrix

A =


1 0 0.7 0 0 0
0 1 0.3 0 0 0

0.1 0 1 0.1 0.25 0
0 0 0 1 0.1 1

0.1 0 1 0 1 0.1
0 0.1 0 0.25 0 1

 (91)
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which is clearly not symmetric. With this matrix we can associate a bipartite graph like the
one shown in Fig. 30, where xi refers to column i and yj to row j. The procedure for forming
such a graph is quite straightforward - given a column xk, match it to the corresponding
row yk, and then connect yk to all other columns xi for which aki 6= 0. We normally start
the procedure from node x1, and end it when all the rows and columns have appeared in the
graph.

Figure 30: Bipartite graph that corresponds to the matrix in (91).

The diagram in Fig. 30 indicates that matrix A cannot be permuted into a block diagonal
form, since the corresponding bipartite graph does not consist of two or more disconnected
components. To see how epsilon decomposition can help produce such components, suppose
that we pick ε = 0.1. Doing so will obviously eliminate all elements whose magnitude is 0.1
or smaller, which produces a “sparsified” matrix

Aε =


1 0 0.7 0 0 0
0 1 0.3 0 0 0
0 0 1 0 0.25 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 0 0.25 0 1

 (92)

If we now represent matrix Aε as a bipartite graph (following the procedure that we just
described), we will obtain the structure shown in Fig. 31. It is important to recognize at this
point that nodes x3 and x5 appear more than once in this figure. Whenever that happens,
we need to merge the blocks that have common nodes (in order to avoid redundancy). If we
do so, we obtain the graph in Fig. 32, which consists of two disconnected components.

The ordering of the nodes in this figure tells us that matrix Aε can be transformed into
a block diagonal form using permutation vector

p =
[

1 2 3 5 4 6
]

(93)
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Figure 31: Decomposition with overlapping for ε = 0.1.

Figure 32: Decomposition when overlapping components are aggregated.
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If we apply this permutation to matrix A, the resulting matrix Ã can be decomposed as

Ã = ÃD + εÃC (94)

where

ÃD =


1 0 0.7 0 0 0
0 1 0.3 0 0 0

0.1 0 1 0.25 0 0
0.1 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0.25 1

 (95)

and

ÃC =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0

 (96)

Such a structure is not ideal for parallel computing (because the block sizes are not balanced),
but it is clearly better than the one we started with, so we should continue looking for an
appropriate choice of ε.

If we now increase ε to 0.3, we obtain matrix

Aε =


1 0 0.7 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 0 0 0 1

 (97)

Applying the epsilon decomposition to Aε produces the bipartite graph shown in Fig. 33,
which assumes the form shown in Fig. 34 after blocks 1 and 4 are merged (since they have
common elements).

From Fig. 34, we obtain permutation vector

p =
[

1 3 5 2 4 6
]

(98)

which transforms the original matrix A into

Ã = ÃD + εÃC (99)

where

ÃD =


1 0.7 0 0 0 0

0.1 1 0.25 0 0 0
0.1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0.1 0.25 1

 (100)
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Figure 33: Decomposition with overlapping for ε = 0.3.

Figure 34: Decomposition when overlapping components are aggregated.
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and

ÃC =


0 0 0 0 0 0
0 0 0 0 0.33 0
0 0 0 0 0 0.33
0 1 0 0 0 0
0 0 0.33 0 0 0
0 0 0 0 0 0

 (101)

Remark 2. Note that we grouped node x2 with nodes x4 and x6, in order to obtain two
diagonal blocks of equal sizes. By doing so, we produced a structure that is well suited for
parallel computation. This comes at the expense of increasing ε, however, and will require
more iterations than the case where ε = 0.1.

Remark 3. The tradeoff between block sizes and the convergence rate is something that
needs to be monitored carefully when applying this technique, because increasing ε too much
can slow the iterative process down to a point where it becomes inefficient. On the other
hand, choosing a very small ε usually fails to produce a sufficient number of diagonal blocks,
which limits our ability to parallelize the computations.

As a final point in this topic, we should note that epsilon decomposition can be uesful
even if matrix A has only a handful of small elements. The following example illustrates
how scaling can help in such cases.

Example 11. Consider system
Ax = b (102)

where

A =


5 2 0 1

0.1 0.1 0.01 0
2 2 8 4
2 2 6 10

 (103)

and

b =


5
0
2
5

 (104)

If we were to set ε = 0.1, matrix Aε would have the form

Aε =


5 2 0 1
0 0 0 0
2 2 8 4
2 2 6 10

 (105)

which is clearly not suitable for a decomposition. Since there are no other reasonable choices
for ε in this case, it would appear that there is nothing more that we can do.

It turns out, however, that there is a simple way to resolve this problem. To see how
that can be done, suppose that we multiply both sides of (102) by matrix

D =


0.2 0 0 0
0 10 0 0
0 0 0.125 0
0 0 0 0.1

 (106)
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whose elements are reciprocals of the diagonal elements in A. If we do so, the system will
take the form

Āx = b̄ (107)

where

Ā =


1 0.4 0 0.2
1 1 0.1 0

0.25 0.25 1 0.5
0.2 0.2 0.6 1

 (108)

and

b̄ =


1
0

0.25
0.5

 (109)

Matrix Ā can now obviously be expressed as

Ā = ĀD + εĀC (110)

where

ĀD =


1 0.4 0 0
1 1 0 0
0 0 1 0.5
0 0 0.6 1

 (111)

ĀC =


0 0 0 0.8
0 0 0.4 0
1 1 0 0

0.8 0.8 0 0

 (112)

and ε = 0.25. As a result, equation (102) can be solved iteratively using Jacobi’s method.

Remark 4. In this example we did not use bipartite graphs, because matrix Ā already
has the desired structure. In general, this will not be the case, and it is usually necessary to
perform a permutation in order to produce a matrix of the form (110).
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