ELEN 162
A. 1. Zecevic

Lecture Notes for Week 5

Eigenvalue Estimation

On first glance, estimating the eigenvalues of a given operator seems to be a straightforward
task, which can be handled by any classical computer with sufficient resources. It turns out,
however, that this is an important problem in quantum computing, because it provides the
conceptual framework for algorithms that perform prime factorization. Since our ultimate
goal is to understand how these algorithms work, we will need to examine the eigenvalue
estimation problem in some detail.

To explain what this problem entails, suppose that we are given a unitary operator U
and that ; is one of its eigenfunctions. We will initially assume that ; is known, and will
later show how the algorithm should be modifed when this is not the case.

Since U is unitary, we know that the corresponding eigenvalue A; will have the form
Aj = €%, Setting w = ¢;/2m, we can rewrite \; as \; = ¢*™ (which will be a bit more
convenent to work with). Given this change of variables, our objective in the following will
be to design a quantum circuit that can compute w as accurately as possible. As we do so,
we will have to distinguish between two different scenarios - one in which w can be computed
precisley, and another in which it can only be approzimated.

Scenario 1: Exact Computation of w

When the number of bits in w matches the number of available qubits, it is possible to
compute the eigenvalue exactly. To see how this can be done, suppose that w has n bits in
its binary expansion, and that we have n qubits at our disposal. In that case, the binary
representation of w will have the general form

W=q+x2 42272+ 412,27 (1)

where ¢ is an integer, and each zy is either zero or 1.
For our purposes, it will be helpful to rewrite w as

T
= _— 2
w=q+ 5 (2)
where
r=r 2" b2t 4 4,20 (3)

is an integer. When using expression (2) to compute A, it is important to keep in mind that
q is actually irrelevant, since

>\j — 627riw _ 627r11q i e(27rim)/2" (4)

and 2™ = 1 for any integer ¢. As a result, in the following we will set g to zero, and assume
(without any loss of generality) that w = x/2".

The problem that we will be solving can now be stated as follows:
Problem 1. Suppose that we can place a system of n + 1 qubits into state
Uin = o ® g @ ... ® Py ® & (5)
Our task will be to build a quantum circuit that takes Wy, as its input, and produces state

Uout =V, & =0y, QU ® ... QYy, ®E; (6)

where {21, zs, ..., x,} represent the bits that appear in the binary expansion of w.

Before we explain how this problem can be solved, we first need to introduce the concept
of a quantum Fourier transform, and say a few words about its properties.

Quantum Fourier Transforms

Given an orthonormal basis {Wo, ¥y,..., Uy 1} (where N = 2"), the quantum Fourier
transform is defined as an operator that maps a basis state ¥, into

~

1 =, .
Q) = = >0 @i, @
y=0

The reason why we refer to expression (7) as a quantum Fourier transform lies in its similarity
with the normalized discrete Fourier transform, which is computed as

1 N—-1
T, = —— 62m’%k m (8)
U

for a given sequence {ug, uy,...,uy_1}. It is easily verified that this formula can be obtained
from (7) by replacing ¥ with w, y with k£ and = with n.

In order to solve the eigenvalue estimation problem, we will also make use of the inverse
quantum Fourier transform, which is defined as

~

1 N—-1 .
Q7 (1) = = 3 ey ©
Yy m kzz:o k

It is not difficult to show that this definition is consistent with the one in (7), since the
operator described in (9) satisfies

ot [Qrw,)] = v (10)

(we won’t do that here, but you can find the derivation in the textbook).

We will now describe how the quantum eigenvalue estimation algorithm works by breaking
it down into two steps.

Step 1 - The First Quantum Circuit

In the first step, our objective will be to design a quantum circuit that takes
Uin = QP ® ... ¥ ®E; (11)

2

as its input, and produces state
Vo = F(w) ®E; (12)

at the output, where
N-1

1)
=7 > ey, (13)

In order to build such a circuit, it will be useful to introduce a pair of operators Ap and Al,

which are defined as A
Ao = (o, 1) tho

A (14)
A = (Y1, 9) P
It is not difficult to see that these operators satisfy
Agthe = (o, o) Yo =
Agthr = (tho, ¥1) by = 0 (15)
Avhg = (41, ¥o) 1 = 0
Aﬂ/)l = (Y1, Y1) Y1 =
since functions 1y are), orthonormal. X R
The four identities described in (15) allow us to express Agt, and A9, as
Aoty = —= Aot +10n) = <= (Aotho + Anth) = —=v
0+—\/§00 1—\/500 01—\/50 o
" 1 . 1 . A 1
Ay = —A + 1) = —=(A1g + A =
lw-‘r \/§ l(wo ?/)1) \/5(11/]0 11/)1> \/§w1

To explain why the last two transformations are relevant, let us assume that we have a pair
of particles that are in state ¢, and a third particle which is in state &;. The overall wave
function of such a system can then be represented as

U=y w9 (17)
If we define operator Wy as
Wo=I®A @I +IxA U (18)
and apply it to function ¥, we obtain
Woll = ¢y ® (12101/4) R &+ vy © (Aiyy) ® (Ug) =

1 1)
Yo Q& + Py ® —= ® ¥TE; =

BV V2 (19)

1 1 ,
= Us® o O & Ty © ST B G =

=1y ® Py R E;

where
1

Sﬁozﬁ

A second operator of the form

(%o + € 9n) (20)

Wi=Ay0lol+A olxU? (21)
will then transform function WO\I/ into
Wy Wol = W, (Y ®po &) = (12101/4) ® Yo ® &+

R N 1 1 ,
+H(A1hy) @ 0o @ (U%E;) = —=tho ® o ® & + —=1h1 ® o ® 2742 =
(1 +) 0 (]) \/§ 0 0 7 \/§ 1 0 7 (22)
1

1 .
\/5% ® o ®&; + 562”"”'2% ® o ® & =

= 1 ® Py Q&

where
1 2miw-2
o1 =—=(t +e Yr) (23)

V2

Remark 1. Note that the rules for tensor products allow us to move the terms e and
€22 pext to 1. Doing so results in more compact expressions, while leaving functions

WO\II and W;WyW¥ unchanged.

Recalling that 1, = H Yo (where H is the Hadamard operator), the procedure that we
just described can be schematically represented in the manner shown in Fig. 1. Note that
both ¢; and ¢y depend on w, so we will refer to them as ¢;(w) and ¢o(w) whenever it is
important to emphasize this fact.

Yy (N8
Yy o—— H o ¥1

(uns Po
g o—— H o ©o

& &
& oo U U%2—— &

Figure 1: A quantum circuit that transforms 1y ® ¥y into ¢ ® .

When interpreting the diagram in Fig. 1, we should bear in mind that it represents a
two step process. In the first step (which corresponds to operator Wo), one of the particles
that was in state v, is transformed into state pg(w), and in the second one (which corre-
sponds to Wl), the state of the other particle changes from ©, to ¢1(w). The nodes in this

4

figure represent points in the process where these transformations occur. Since they involve
applying different powers of operator U to function &;, each node is connected to the block
that is active in that step

This diagram can be easily generalized to the case when we have n qubits in state ¢,
and the powers of operator U range from 1 to 2"~ !. Such a configuration is illustrated in
Fig. 2, in which functions ¢y (w) have the form

1 ok
on(w) = —2(1/;0 429y (k=0,1,...,n—1) (24)
~ ¢+ Pn—1
Yo o H o Pn—1
" Py Pk
g o H o Pk
; (o 1
Yo o H o Y1
- Py Yo
Yy o H o o
5] o 5] U UQ | | U2k L | /\277,—1_0 5‘7

Figure 2: A generalization of the circuit in Fig. 1.

As in Fig. 1, the nodes in this diagram correspond to points in the process where a
particle is transformed from state 1), into one of the states ¢ (w) (k=0,1,...,n—1). Since
such transformations involve applying different powers of operator U to function &;, each

node is connected to the block U?" that is active in that step.

Remark 2. That fact that we need high powers of U when n is large poses a practical
problem which we will address later. For now, it suffices to say that it can be solved in an
elegant way.

The quantum circuit in Fig. 2 is useful because it turns out that its output

Uout = Pn-1(w) ® Pn_a(w) ® ... R ¢1(w) ® @o(w) (25)

can be equivalently represented as

ot

where F'(w) is the function defined in (13) (a derivation of this property is provided in the
textbook). This sets the stage for the second step of the algorithm, in which we will design
a quantum circuit that takes (25) as its input, and produces function

le:c - 77Z}:c1 X 77/}:(;2 ... 77/):(2” (27)

at the output (where {1, z,...,z,} are the bits that appear in the binary expansion of w).

Step 2 - The Second Quantum Circuit

It is not difficult to see that F'(w) represents the quantum Fourier transform of W, since

on_q on_q
1) 1 -
Fw) = 2mWy = e2mismy 28
V2 = 2)
when .

As a result, we can retrieve x by simply applying operator Q‘l to F(w).

To see how the inverse Fourier transform can be implemented using a quantum circuit,

we should first observe that functions ¢y (k= 0,1,...,n — 1) can be equivalently expressed
as]]
w) = — + 627”'(2’%)) i| - + 627riak(z) 30
or(w) NG (o (0 5 [0 Y] (30)
where
(1) = Tpp12 ' F Tpg02 2. 228 (31)

(this is shown in the textbook). That allows us to represent function

Fw) = pn-1(w0) ® pp—2(w) ® ... ® p1(w) ® po(w) (32)
* 1 1
F(w) — E [,,7[}0 + eQm‘an_l(x)q/Jl} ® E [1/}0 + e2ﬂian_2(x)¢l} Q...

(33)

® [77[}0 + €2ﬂia0($)1/11}

1
V2
Remark 3. Note that F becomes a function of z after replacing 2w with ay(z). We
will continue to refer to it as F(w), however, since w and x are related in the manner shown
in (29) (and are therefore interchangeable).

To gain some additional insight into the structure of function F'(w), it is helpful to show
what coefficients ay look like for different values of k. For the sake of simplicity, we will only
consider the case when k € {0, 1, 2}.

CASE 1. If k£ = 0, the first term in

(1) = 2p 1270 F ap 0272 p, 28 (34)

is 127! and the last one is z,27". Consequently, we have that

ag(x) =227 + 022+ 1,27 (35)

CASE 2. If k£ =1, the first term in
(7)) = 2127 F 2027 28 (36)
is 127! and the last one is z,2'~". This implies that

ay(z) = 227+ 2327 4 4,2 (37)

CASE 3. If k = 2, the first term in
Ofk(ZE) = fL'k_HQ_l + $k+22_2 et ank—n (38)

is 527! and the last one is 7,2 ™. As a result, ay will have the form

(1) = 2327 + 24272 . 3,20 (39)

We will now look at two examples which illustrate how {zy, zs, ..., z,} can be extracted
from function

F(w) = pn-1(w) ® pp-a(w) @ ... ® p1(w) ® po(w) (40)

Ezxample 1. Let us consider the simplest possible scenario, in which w has only 1 bit in

its binary expansion, and we have a single qubit at our disposal. This implies that n = 1,
and that w has the form

w=1,2" (41)

If we substitute n = 1 into (40), function

F(w) = ¢n1(w) ® pp2(w) ® ... ® p1(w) ® @o(w) (42)
reduces to
F(w) = po(w) (43)
Given that 1
¢0(w) - [wo + QQMO‘O(I)Q/)J (44)

V2
it now follows that we only need to determine aq(x).
When n = 1, the last term in

ao(r) = 2127 + 20272+ 42,277 (45)
is 71271, Since the first and last terms are identical in this case, ag(z) becomes

ap(z) = 127" (46)

7

and F(w) can be represented as

Fw) = = [+ emeos] = == [y + 2oty] =
1 (47)
NG [1ho 4 ™19y
Observing that ’ .
emxl — (em>zl — (_1>zl (48)
(47) can be rewritten as
1
F(w) = —= [t + (=1)" 9] (49)

V2
Since this expression matches the output of a Hadamard gate with input ¢, (see lecture
notes for week 4), it follows that F(w) = H1,,, and that

HIF(w)] = H*y, =, (50)

We can therefore conclude that x; can be recovered by simply passing F(w) through a
Hadamard gate.

Example 2. Suppose w has 2 bits in its binary expansion, and that we have 2 qubits at
our disposal. In that case n = 2, and can express w as

w=112"" 419272 (51)
Setting n = 2 in expression
F(w) = pn-1(w) ® pn2(w) ® ... Q@ ¢1(w) ® o(w) (52)
reduces F'(w) to
F(w) = ¢1(w) ® po(w) = % [0 + 271] @ % [1ho + €m0y,] (53)

which means that we need to compute «g(x) and oy (x).
When n = 2, the last term in

ap(x) =127 F 1272 4,27 (54)

is 19272, so ag(x) becomes
_ o1 -2
ap(r) = 1127 + 192 (55)

If we repeat this analysis for oy, we will see that the last term in
(1) = 2027 + 23272 . 3,2 (56)
is now 927!, which matches the first term. As a result, o;(z) will have the form

ay(x) = 29271 (57)

Using expressions (55) and (57), we can rewrite ¢1(x) and po(z) as

S01<x> _ % {77/}0 + eerim(z)wl] — LQ [wo + em’xgwl] _ % [wo + (_1>zzw1] —]fhpm (58)

and

1 . 1 ; -1 -2
wo(z) = NG [¢o + 627”“0(1)1/)1} = o) [wo 4 2rie 2T w2y, (59)

respectively. We can now determine z; and x5 in two steps.

STEP 1. Our first step will be to recover xs from @1 (z). This is actually quite straight-
forward, because it only requires passing this function through a Hadamard gate (given that
Hp = %2)

STEP 2. Recovering x; from ¢g(z) is considerably more complicated, since the expression

for po(x) includes both x; and x5. In order to address this problem, we should first observe
that when x4 = 0, function

1

vo(z) = E [@Do i eQm’(x12—1+:c22—2)¢1] (60)

simplifies to

900<$> — % |:2/)0 + 627Ti£1712_1¢1:| _ % [wo + €7Ti21¢1] —

1 A
= E Wo + <_1> %] = le‘l

Since x; can be easily determined in this case (using a Hadamard gate), it follows that we
will have to perform additional operations only when zo = 1.
To see what that entails, let us introduce an operator R; which transforms basis functions

1o and 11 as

Rytho =
Ak 0 0 - (62)
Ry = e?m? (0
It is not difficult to see that the inverse of this operator satisfies
Ry o =4
e (63)
Rty = e2mi2 g
which implies that
o 1 o . _ oy A
By o(w) = —z [Ry g + 2t m2) 1y, |
V2
1 (64

; -1 -2 _orig—2
— [¢0+€2m(x12 +x22)'6 2mi2 ¢1]

V2

From expression (64), it is obvious that applying operator fi; ' to ¢y allows us to eliminate

the term x5 - 272 when zo = 1, since

[Q% + 627ri(2712_1+2_2) . 6727”-2_21/11] _

A 1
RQISOO = E

1 I R S
|:,¢}0+627n(x12 142722 2).1/]1] _

V2
1 1
V2 V2
As a result, we can extract x; by passing function R; Yo through a Hadamard gate.
The analysis that we just performed indicates that we need to apply R,' to ¢y when
ro = 1, but not when x5 = 0. The quantum circuit in Fig. 3 shows how this can be done.

The black node in this diagram indicates that the quantum gate associated with operator
R acts selectively, and activates only when xo = 1.

% [@Do + €2mx12—1¢1] _ (65)

[1o + e 1)y = [P0 + (—=1)"19]

A

Y1 o—— H

Yo o

activates
lf 372 — 1

Figure 3: A circuit that transforms ¢ ® g into ¥, ® 1,,.

Remark 4. The textbook describes an operator that corresponds to such a “conditional”
transformation. We won't get into the details here, but it suffices to say that it can be
constructed using operators Ay, Ay and R L

Remark 5. The circuit in Fig. 3 allows us to map function F(w) = ¢1(x) @ @o(x) into
U, = 1, ®1Y,,. Recalling that F(w) represents the quantum Fourier transform of ¥, it
follows that this circuit performs the inverse quantum Fourier transform.

The quantum circuit described in Fig. 3 can be easily generalized to the case when we
have n qubits. The diagram in Fig. 4 shows what it looks like when n = 3 (the textbook
analyzes this scenario in much more detail). This diagram indicates that the bits of w are
once again recovered in stages, starting from z3 and ending with x;.

What can we conclude from all this? Examples 1 and 2 (as well as the circuit shown in
Fig. 4) indicate that if w has n bits in its binary expansion, we can compute it precisely
using a pair of n qubit quantum circuits. The question that we will adress next is what to do
when the number of available qubits is smaller than the number of bits in w. This can occur
if w is a real number (and therefore has infinitely many bits), or if it is a rational number
whose binary expansion contains more than n bits.

10

P2 o IA{ * °© w:lrgg
°© Tﬁxg

e i)
activates

Tﬁxl

$o o

activates activates
ifay=1 ifax, =1

Figure 4: A quantum circuit that produces ¥, ® 1., ® 1,,.

Scenario 2: Approximating w with a Preassigned Precision

Suppose that we have n qubits at our disposal, and that the number of bits in the binary
expansion of w is larger than n. In that case, w will have the general form

W=q+x 2 F 2272+ 42,27+ (66)

where

5= Y w27 (67)
j=n+1
and at least one of the terms in the infinite sum is nonzero.

Since our quantum computer is limited to n qubits by assumption, in this case we will
not be able to determine w precisely, and our goal will be to produce an approximation that
is as accurate as possible. To see how this can be done, we should first recall that the integer
part of w has no effect on eigenvalue A = e*™. This allows us to disregard ¢ in (66), and
assume that

w=227 22 a2 Y @2 (68)
j=n+1

with no loss of generality. If we now define integer = as

= 2" V2"t g, 20 (69)
it is obvious that

r -1 -2 -n
represents the best possible n bit approximation of w (because it matches the first n bits of

w ezactly).
Following the ideas that we developed previously, we will apply the same quantum circuit
as before to input function

Uin =% QY ® ... Ry ®E; (71)

11

When we do so, we will once again obtain

Youe = F(Cd) ® 5]' (72)
where
1 2" —1
F w) = e?rriwy \Il 73
9= L (73

What is different in this case is that F'(w) is not the quantum Fourier transform of state W,

any more, because
an—1

Q(T,) ﬁze%nw (74)
and w # z/2". As a result, we will not be able to recover x by simply passing F'(w) through
the second circuit (which would be equivalent to applying the inverse Fourirer transform to

What will we obtain if we do so anyway? To see this, we should first note that applying
operator Q! to F (w) produces

2"—1

o = > _ar(w)ly (75)

where coefficients a; are defined as

]' TI'L’HL
= o z:: ¢’ (76)

(a derivation of this expression is provided in the textbook). Note that these coefficients
depend on w, which means that the output function will depend on w as well.

If we now perform a measurement on all n particles in the standard basis, we will obtain
one of the functions from set {Wy, ¥q,...,Won 1} (in the following, we will denote this
function by W,). Ideally, we would like r to equal z, since x/2" represents the best possible
n bit approximation of w. This is much too restrictive, however, because requiring r = x
allows for only one acceptable state (out of 2™ possibilities). Since the probability of such
an outcome is very low, we need to come up with an alternative strategy.

One possibility would be to expand the set of acceptable functions, and include any W,

that satisfies
T r

2 2n
where 7 is a positive integer. Doing so would obviously make a “favorable” outcome more
likely, and would also ensure a certain level of similarity between functions ¥, and W,., since
inequality (77) implies that z/2" and /2" have the first 7 bits in common. What this means
is that we will obtain an approximation

<277 (77)

W= 2% =0.r179...7, (78)

which matches the first 7 bits of w.

12

There is no doubt, of course, that we would lose some accuracy by making such a com-
promise, since T must be smaller than n (given that we have only n qubits at our disposal).
We will see, however, that the price tag is not too high if n is sufficiently large.

To explain why this is so, we first need to evaluate the likelihood that we will actually
register a state W, that satisfies condition (77). From expression (75), we know that the
probability of observing any given state Wy is

P(¥y) = ax(w)[* (79)

We will therefore need to add |a,(w)|* over all 7 for which inequality (77) holds. This is not
a trivial thing to do, but the final answer turns out to be quite simple.

To represent this answer in a form that is convenient from a computational standpoint,
let us introduce a constant e which is defined as

e=2""T"T-1 (80)
Condition (77) can then be rewritten as
e —r|<2" T =e+1 (81)

which is equivalent to
[z —r|<e (82)

(since x, r and e are integers). Inequality (82) is useful because the probability that it will
be satisfied has a lower bound that is easy to evaluate. This lower bound can be expressed

as
1

2(e—1)
and we can use it to determine the number of qubits that are needed to achieve a desired
accuracy.

To see how this can be done, we should first recognize that expression (83) tells us that
the probability of an “acceptable” outcome will exceed 1 — ¢ if € and e are related as

Prob(|lz —r| <e) >1— (83)

Recalling that ¢ = 2"7 — 1 and setting s = n — 7, condition (84) becomes

1
— < 85
225 —2) =° (85)
which can be equivalently expressed as
L 9y (86)
2e T
This inequality indicates that s should satisfy
> log,(2 + !) (87)
S —
= 108 9

13

and that we need

1
n:7'+527'+10g2(2+§) (88)
c

qubits in order to appoximate the first 7 bits of w with the desired probability.
The following example illustrates the practical value of this result.

Example 3. Suppose that we want our estimate to match the first 20 bits of w, and that
we would like the probability of obtaining such an approximation to exceed 99.9% when we
perform a measurement. In that case, we should choose € = 0.001 and n should satisfy

1
n > T+log2(2+2—€) =20+ 8.97 (89)

Rounding off to the next integer, we can conclude that approximating w with this precision
requires at least 29 qubits.

Procedure when &; is Unkown

We will close this section by pointing out a problem that could potentially limit the
effectiveness of the algorithm that we just described. This problem has to do with the
assumption that eigenfunction &; (which corresponds to \; = €*™) is known in advance,
and that we can place a particle into this state whenever we need to. Based on these
assumptions, we established that the circuits shown in Figs. 2 and 4 will produce function

Uout =V, @& = (¢, @y, @ ... Ry,) RE; (90)

which approximates w as

0= 2% =0.rry...17y (91)
We also showed that there is a high probability that this number will match the first 7 bits
of w if the number of available qubits is sufficiently large.

The question that we now have to address is what happens when eigenfunction §; is not
available. Under such circumstances, it becomes necessary to determine whether §; can be
adequately replaced by some other function £ that is easy to produce. To see if something
like that is possible, we should first recall that Uisa quantum operator, whose eigenfunctions
{&} constitute an orthonormal basis by definition (this is one of the postulates of quantum

mechanics). As a result, we can express any function £ in this space as
§= Z ;& (92)

If we choose one of these functions as our input (instead of &;), it can be shown that the
output state will have the form

Wour = Z il w0 0 QE] (93)

The possible outcomes have probabilities |o;]? (i = 1,2,...), and we know that one of them
will be observed when we make a measurement. We don’t know which one it will be, however
- all that we can say is that if we register state

Voo,0 0®& (94)

14

the resulting approximation
@ = 0.r0rP 0 (95)

n

is very likely to match the first 7 bits of the eigenvalue that corresponds to &;.

Such a scenario is obviously different from the one that we examined previously, but
the algorithm that we described is still useful, because it guarantees that we will find one
eigenvalue of U with the assigned precision. In subsequent lectures, we will see that this is
sufficient for solving certain difficult problems (such as order finding and prime factorization,
for example).

15

