ELEN 162
A. 1. Zecevic

Lecture Notes for Week 4

In contrast to traditional computers (which operate on bits of information), quantum
computers work with qubits. Qubits can be identified with quantum particles whose state
has the general form v = aiy + By, where ¢y and i, correspond to observable values
of some physical quantity. The specific interpretation of states 1 and ¢, depends on the
physical realization of the system. It can refer, for example, to the spin of an atom (in
which case 0 and 1 correspond to “up” and “down” orientations along an axis), to its energy
state (where 0 and 1 represent the “ground” and the “excited” state, respectively), or to any
number of other physical properties with binary characteristics.

Although such a definition directly associates qubits with physical properties of quantum
particles, for our purposes it will be more convenient to think of a qubit as an abstract
mathematical entity. The advantage of such an approach is its inherent generality, which
allows us to explain the principles of quantum computing in a way that is independent of
the specific implementation.

We will begin our discussion by examining how qubits differ from classical bits. One of
the most important distinctions stems from the fact that the state of a qubit is not limited
to 1y and v (which correspond to the “classical” 0 and 1). While it is true that we will
record one of these two states when we perform a measurement, a qubit can also be in a
state of superposition, in which both o and /5 are nonzero. There is an unlimited number of
such “intermediate” states, since the only constraint that these coefficients must satisfy is
ol + |87 = 1.

It is important to recognize in this context that the information contained in the state of
superposition is “hidden”, since any measurement performed on such a system will necessarily
produce either v or 1; (with probabilities |a|* and |3]?, respectively). These two states tell
us nothing about what the function looked like before the observation was made - it could
have been in any state v = aipy + [B11. What is interesting, however, is that quantum
computing can exploit this “hidden” information in a very elegant way.

To explain how that can be done, we first need to describe the basic building blocks of
quantum computers (which are known as quantum gates). As the name suggests, quantum
gates have certain similarities with standard logic gates that are used in the design of digital
computers. There are, however, some fundamental differences as well, one of which has to
do with the fact that quantum gates operate on the coefficients that describe the state of
superposition (rather than the measurable states themselves).

To see why this is an advantage, we should recall that a standard logic gate with n inputs
can perform only one operation at a time (an n-input AND gate, for example, transforms
any input combination X1, Xs,..., X, into Z = X;-X3-...- X,,). An n-input quantum gate,

on the other hand, operates on all 2" coefficients {ag, a1, ..., azn_1} in expression
on_1
U = Z ap Wy (1)
k=0
simultaneously, and transforms them into a different set of coefficients {pg, p1,..., pan_1}-

1

Single Qubit Gates

In the following, we will consider three types of single qubit gates, each of which plays an
important role in quantum computing.

The Quantum NOT Gate

The quantum NOT gate corresponds to operator X , which we already encountered. This
operator was defined using relations

Xtho =y (2)
and

Xohy =1y (3)

and we established that its matrix representation in basis {1y, 91} is
0 1
]

Matrix X is useful because it allows us to easily compute function ¢ = X for any given
choice of 1. We can do so since applying operator X to function v = agypg + 19, produces

o = X = potho + p1t (5)

and we know that coefficients py and p; are related to agy and oy as

SIS)

It is not difficult to show that this operator satisfies X2 =1. Indeed, if we apply X to
function ¢ twice, we obtain

£= X%/) = X(Xw) = X[Oéo(XZ/JO) + @1()21/}1)] = X(O‘Od’l + o) =
= ao(le) + 041(X¢o) = ago + a1 =P

Since repeating this transformation returns the qubit to its original state, we say that the
quantum NOT gate is reversible.

It is important to recognize that this gate is more general than its classical counterpart,
since it simultaneously manipulates both ag and oy (rather than a single 0 or 1), and turns
them into py and p;. The two operations match only if (g = 1, a3 = 0) or (ag =0, oy = 1),
in which case the quantum transformations

Xipy =t (8)

(7)

and)
Xy = 1y (9)

reduce to simple “bit flips” (of the sort that a standard NOT gate performs). This is a
significant difference, since it implies that quantum gates can produce an unlimited number
of internal states beyond the ones that are actually measurable. Although we cannot observe
them, these states represent an essential part of the computation.

2

The Z - Gate

The operator that corresponds to the Z-gate is defined by relations
Zapy = 1y (10)

and R

Zy = —n (11)
To determine its matrix representation, let us assume that this operator transforms function
= apthg + a1y into

o= 29 = potbo + p1i (12)
If we now rewrite Z@/)O and Zwl as
Zl/Jo = anto + axth (13)
and X
21 = any + anin (14)

expressions (10) and (11) imply that

a1l = 1
a2 =0
12 (15)
91 — 0
ag = —1

We can therefore conclude that the matrix representation of operator Z has the form
| @11 Q21 | 1 0
Z_{alz &22]_[0 —1] (16)

It is easily verified that this operator satisfies Z2 = T (just like operator X), which means
that the quantum Z-gate is reversible.

The Hadamard Gate

The third type of single qubit gate that will be of interest to us is the so-called Hadamard
gate, which is associated with the Hadamard operator. We previously established that this
operator is defined by relations

A 1 1
Hipg = —=1pp + —=1 =~ 17
o \/51/10 \/ﬁlﬂl . (17)
and
Ay = =iy — — = 1 (18)
1 2 0 G 1=
and that its matrix representation has the form
111 1
-l] o

3

As in the previous two cases, it turns out that the corresponding quantum gate is reversible,
since H satisfies H2 = 1.

Some Additional Properties of the Hadamard Operator

One of the reasons why the Hadamard gate is important in quantum computing has to
do with the fact that it produces functions H Yo = Y, and H Yy = Y_, respectively. This
turns out to be a very useful property, paticularly in dealing with quantum algorithms that
involve multiple qubits. To get a sense for why this is so, let us consider what happens when
we apply the Hadamard operator to a two particle system that is in state 1y ® 1. If we do
that, we obtain

(H ® H)(1ho ® 1hg) = (H1bo) ® (Ho) =

(Yo + 1) ® (Yo + 1)

L L -

[(tho + 1) ® (Yo +11)] = % (Woo + Wor + Weg + V1]

l\DIH

(using properties of tensor products). Note that all four outcomes have the same probability
in this case, which is something that we will frequently exploit in our discussion of quantum
algorithms.

In applications of this sort, operator H® H is usually expressed as H®2 (in order to
simplify the notation). This allows us to represent (H ® H)(1hy @ 1) as H*?(¥y,) (which
is much more compact), and do something similar in cases when the number of particles is
larger. To illustrate how this works in practice, suppose that we have 3 qubits in state v,
and that we decided to apply a Hadamard operator to each of them. Using expression (20),
the resulting function (H ® H @ H)(1y ® ¥y ® 1) can then be represented as

(H® H® H) (o ® o @ o) = (Hipo) @ (Hepy) @ (Hepy) =

21
=1y ® (Y Ry) = \/—(¢0+1/11) 1(‘I’oo+‘l’01+‘1’10+‘1’11) &)

Setting
Uik =1 @ Uy =1 ® (¢Y; ® y,) (22)

and applying the notation that we just introduced, expression (21) can be rewritten as

1
V23

It is not difficult to see that we now have 8 possible outcomes, each of which is equally likely.
This approach can obviously be generalized to n qubits that are in state 1. In that case,
we obtain a composite wave function with 2" components, which be represented as

I:I®3(\IJOOO) = (Wooo + Yoo1 + -+« + Uyi0+ Ui11) (23)

2m—1

HE (W) = J_ Z 0, (24)

Such generalizations are important because a number of quantum algorithms use H ®n(Wy) as
their starting point. Functions ¥, that appear in (24) should be interpreted as Wy = Wy, o,

Uy = Uy 1, ... , Yon_; = Wyy. 1. Note that this expression has the same general form as
expressions (20) and (23), except for the fact that each state ¥, now has probability

P(z) = (;2_”)2 = 2% (25)

When analyzing the properties of operator H, we should also mention that it has an
alternative representation which is often used in quantum computing. To see what this
representation looks like, it suffices to observe that expressions

Hjy = %% + %1/11 (26)

and 1)
Fpy =~y — = 27
1/}1 \/52/}0 \/577/11 ()
can be rewritten in the form
1
V2
where = can take values 0 or 1 (it is hopefully obvious that we can obtain (26) by setting

r = 0, and that (27) corresponds to z = 1). This result will prove to be very useful in
developing a quantum algorithm for eigenvalue estimation.

Hy, [0 + (—1)"¢] (28)

Multiple Qubit Gates

Perhaps the most important multiple qubit gate is the so-called C-NOT gate, whose schematic
diagram is shown in Fig. 1. This type of gate is said to be universal because it can be used
to construct any other multiple qubit gate.

- control qubit

Y
Vg O— output .
R A
O 0 y=C0a®)
vy O———
N

e target qubit

Figure 1: Schematic representation of a C-NOT gate.

The operator C that is associated with this type of gate acts on the four basis states
{Wo0, Wo1, Uyp, ¥y1} in the following way

C (\DOO) = g
it~ o o
C (Vy0) = ¥y
C (P11) = Yo

Note that this transformation changes function W;; only if the first bit in the index is 1 (in
which case, the second bit “flips”).

To get a sense for what this means in practice, let us assume that the control qubit is in
state 1, = aghg + a111 and that the target qubit is in state v, = Bovbg + F1¢1. When these
two qubits interact, the tensor product 1, ® v, assumes the familiar form

Ya @y = agWoo + a1Wo1 + aaWio + az¥iy (30)
When operator C is applied to this expression, we obtain a new function

O = é (¢a (39 1/117) = aoé(\lfoo) + alé'(\I/m) + agé(qflo) + CL3O(\1111) =

(31)
= agWo + a1Wor + ax¥i1 +az¥yp
If we rewrite (31) in the proper order as
D = poWoo + p1Wo1 + p2Wio + p3¥is (32)

the relationship between coefficients [ag a1 ag ag] and [pg p1 p2 ps] can be expressed in matrix
form as

00 1000 ag
P1 . 01 00 ay
w1000 1] a (33)
P3 0010 as
From this, we can conclude that
1 000
0100
¢= 0001 (34)
0010

is the matrix representation of operator ' in basis {Woo, o1, V10, ¥11}.

Remark 1. It is not difficult to verify that C? = I, which implies that the C-NOT
operation is reversible.

C-NOT Gates and Bell States

In addition to being a universal building block for quantum computers, the C-NOT gate
can also be used to produce Bell states, which have the form

1
Doy = E (Woo + U1y) (35)

1
Oy = E (Vo1 + Uyp) (36)
1
Py = 7 (Voo — ¥11) (37)
Dy = — (Woy — W) (38)

V2

We will now demonstrate how such states can be obtained by combining a C-NOT gate
and a Hadamard gate. The circuit in Fig. 2 shows one such configuration, which produces
function Pg.

control qubit .
N

~ | Y+

%O—H

C 0 y=C(¥+ @)

g O—

A
target qubit -

Figure 2: A combination of gates that produces Bell state ®g.

To explain how this circuit operates, we should first recall that the Hadamard gate
generates function

1 1
Yy = E% + E% (39)

when its input is ¢y. The C-NOT gate then uses 1, as the control qubit and v as the target
qubit, producing

R 1 1
C by ®) = —=C (o ® o) + —=C (Y1 ®) =

1 . \/1§ A 1 \/§ (4())
- —C(\I}()()) + _C(\Illo) — = (\I/()() + \1111)

V2 V2 V2

This expression obviously corresponds to function ®q.
We can do something similar for the other three Bell states as well. To realize Bell state
Dy, for example, we simply need to replace the target qubit with 1, in which case we obtain

A 1 - 1 4
C Yy ®9) = EC (Yo ® 1) + EC (V1 @) =)
1

1 . A 1
= —=CUp)+ —7=C(¥11) = —4= (Yo +¥y9) =
V2 (Wor) 5 (W11) \/5(01 10) 01

The circuit that accomplishes this is shown in Fig. 3

7

control qubit ..

~ | Y+

¢00—H

C o0 y=C(¥;: @)

11 O—

A
target qubit -

Figure 3: A combination of gates that produces Bell state ®g;.

The Relationship Between C-NOT and XOR Gates

The C-NOT gate is often viewed as a quantum generalization of the classical XOR gate.
To see why this is so, we should first recall that the truth table for the standard XOR
operation has the form

XaY

—_ O O
}—‘OHOF<
o = = Olh

Table 1. The classical XOR operation.

If we interpret X as the “control” bit and Y as the “target” bit, it is obvious that the
output equals the target bit when X = 0 and “flips” it when X = 1. This is similar to
what the quantum C-NOT gate does to the target qubit, but there are several significant
differences that we need to take into account. One of them has to do with the fact that an
XOR gate always performs a single operation on inputs X and Y, producing X © Y as the
output. A C-NOT gate, on the other hand, simultaneously operates on all four coefficients
[ag a1 as az] and transforms them into [py p1 p2 p3]. This suggests that quantum gates have
an inherent potential for parallelism that no conventional logic gate can replicate.

Another important difference between C-NOT and XOR gates is that the C-NOT oper-
ation is reversible, while XOR is not. Indeed, given X @Y = 1, no subsequent operation
on this bit will allow us to recover X and Y (since two different combinations correspond to
the same output). Something similar can be said for the NAND gate as well, whose output
X .Y =1 corresponds to three possible input combinations. As a result, we are once again
unable to determine the original inputs X and Y.

The Quantum Toffoli Gate

Because most conventional logic gates (such as NAND and XOR gates, for example) are
wrreversible, it is impossible to directly map their operation onto a quantum computer. In

8

order to do that, we would first have to transform the original digital circuit into an equivalent
one that consists exclusively of reversible gates. It turns out that this requirement is met if
we use so-called Toffoli gates, whose schematic description is shown in Fig. 4.

control inputs
A b() o T - bl — b()

Figure 4: A Toffoli gate.

In this diagram, ag and by represent control inputs which are automatically replicated at
the output, while ¢; differs from ¢y only when ay = by = 1. The truth table for such a gate
is shown in Table 2, in which the highlighted bits correspond to the two scenarios where

c1 # Co.

Qo bo Co | A1 bl C1
0 0 0|0 0 O
0 0 1]0 0 1
0 1 0|0 1 O
0o 1 170 1 1
1 0 01 0 O
1 0 11 0 1
1 1 o1 1 1
11 11 1 O

Table 2. The truth table for a Toffoli gate.

To see why this operation is reversible, let us consider the cascade connection of two
Toffoli gates shown in Fig. 5. The control inputs in the first stage are ay and by, while a,
and b; assume this role in the second stage. The combined truth table shown in Table 3
indicates that outputs as, by and ¢y are identical to ag, by and ¢y, which means that the
original inputs can be recovered by performing two consecutive Toffoli operations.

a

apg o—— ! ———o Qa9
b1

bo o—— 17 Ty ——— b
Cc

Cop o——— L ———— o C9

Figure 5: A configuration that performs two consecutive Toffoli operations.

IS
=)
)
S
o
o
<
=
=
i
o
i
<
[\
=
[\
@)
[\

— === O O OO

— === O O OO

—_—_-0 o= OO
OO, O, OFRO
—__-0 O == OO
O PO, ORFRO
_ = O O OO
—__-0 o= OO
_ o, O, OO

Table 3. Combined truth table for a pair of Toffoli gates.

In order to show that any logic circuit can be realized using a combination of Toffoli
gates, it suffices to demonstrate that this gate can simulate the NAND operation, since this
type of gate is known to be universal (i.e., it represents the basic building block from which
all other standard gates can be built). The diagram in Fig. 6 shows how this can be done
(the possible input and output combinations for this circuit are provided in Table 4). Note
that Table 4 includes only half of the input combinations that are associated with a regular
Toffoli gate. This is due to the fact that the value of ¢; is fixed at 1.

apg o o 1 — Qo
boO T Ob].:bo
00:10 ° C1

Figure 6: Toffoli gate with input ¢y fixed at 1.

ay by colar b1 o
0 0 1|0 0 1
0O 1 1]0 1 1
1 0 1|1 0 1
11 11 1 O

Table 4. Truth table for the configuration in Fig. 6.

If we now identify ay and by as the inputs and c¢; as the output, the circuit in Fig. 6
can be redrawn in the manner shown in Fig. 7. The truth table that corresponds to this
circuit has the form shown in Table 5. It is not difficult to see that this table conforms to
the NAND function ¢; = ag - by. In view of that, we can think of the configuration shown in
Fig. 7 as an equivalent realization of a NAND gate.

10

agp o | ———© i
l by |
bo o— T —
iCOO: I O C]. p— (ao .bo)

Figure 7: Equivalent realization of a NAND gate.

ap by | &1
0 01
0 111
1 01
1 110

Table 5. Reduced truth table for the configuration in Fig. 6.

What would a quantum Toffoli gate look like? In order to explain this, we first need to
introduce the Toffoli operator T', which acts on basis functions

Uik = Vs ® ; ® Yy, (42)
This operator transforms function W,;; into
T(‘I’zgk) = ‘I’ijk (43)

when i = j = 1, and leaves them unchanged otherwise (in expression (43), k represents the

complement of k). Note that this is precisely what the classical Toffoli gate does with inputs

ag, by and c¢q - it leaves outputs a; and b; unchanged, and ¢; changes only when ag = by =1

(in which case it becomes ¢; = ¢y). A schematic diagram of such a gate is shown in Fig. 8.
When operator 7" is applied to a general function of the form

U = agWooo + a1Woo1 + a2Woio + azWoii+

(44)
+asWigo + asWi01 + agWi10 + a7y

we obtain .
O =T(V) = agWoo + a1Woo1 + azWo10 + azWor1+ (15)
+asWigo + asWio1 + CL6T(\I’110) + G7T(\If111)

In this expression, operator 1" is shown explicitly only in the last two terms, since it leaves
the other ones unchanged. These terms become T'(Wq19) = Wy1p and T(¥qq1) = Wy,
respectively, which means that coefficients ag and a; effectively “trade places”.

11

Va

Pp o

Ve

T

If we denote the coefficients associated with function ® in basis {Wgqo, - -

Y

T

Figure 8: A quantum Toffoli gate.

(¢a 29 ¢b & %)

- ‘11111} by {Ph

P2, - ., pr}, the relationship between {p;} and {a;} can be expressed as
[po | 10 00 000 O0]Tap]
i 01 0O0O0O0O0OO® O a1
Do 001O0O0O0O0OO®O a9
ps | 10 0O01O0O0O0O0 as
pal 00001000 ay (46)
05 00 0O0O0OT1TO0FPO as
D6 00 0O0O0O0OTGO0O1 ag
pr] 0000001 0]]ar|
From (46) we can conclude that the matrix representation of T in basis {Too0, - -, ¥y11} has
the form
(1.0 00000 0]
01 00O0O0O0OOQO0
001 00O0O00QO0
0001O0O0O0F®O
= 00 0O0OT1QO0O0F®O (47)
00 0O0OO0OT1TTG 0O
00 0O0O0OO0OTO 01
(0000001 0|

Remark 2. It is not difficult to verify that operator T satisfies 72

I, which means

that a quantum Toffoli gate is reversible (just like all the other quantum gates that we

considered).

12

Basic Quantum Algorithms

We will begin by examining two relatively simple quantum algorithms, which were developed
by Deutsch and Grover. This will give us an idea of how the quantum approach differs
from the conventional one, and what its potential advantages might be. Once we get a
“feel” for how these algorithms work, we will consider the so-called eigenvalue estimation
problem, which is the key for developing an efficient method for prime factorization. This is
of fundamental importance, since current encryption schemes rely on the fact that classical
computers cannot determine the prime factors of large numbers in a reasonable amount of
time.

Deutsch’s Algorithm

Deutsch’s algoritm is a natural starting point for our discussion, since it is concerned with
a simple function f(z) that can take only values 0 or 1. The problem that this algorithm
addresses can be envisioned as a series of experiments with a “black box”, which takes x as
its input and produces f(z) as its output. The function itself is not known to us, but it is
available to the “black box” internally (which is what allows it to map x into f(z)).

rO0»— [0 f(2)

Figure 9: “Black box” for identifying function f(z).

Our goal in the following will be to identify function f by performing a sufficient number
of tests on the “black box”. We will start by considering the simplest possible scenario, in
which the values of x are limited to 0 and 1. Under such circumstances, our objective will
be to establish whether or not function f is constant (i.e., whether f(0) = f(1)). This can
be done very easily by evaluating f(z) twice (once for z = 0 and once for z = 1). It turns
out, however, that Deutsch’s algorithm can accomplish this task even more efficiently, with
just a single quantum measurement.

To describe how this algorithm works, we will introduce a linear operator U s which acts
like a quantum version of the “black box” (in the sense that it can evaluate f(x) internally
when presented with function 1),). The way this operator works is schematically illustrated
in Fig. 10.

Yy O—— —O Uy
Uy

¢yo— —Of(iﬁ)@%

Figure 10: Quantum “black box” for identifying function f(x).

This diagram indicates that the quantum counterpart of the classical “black box” actually
has two inputs. The first qubit is assumed to be in state 1., and the second one (which

13

plays an auxiliary role) is assumed to be in state 1),. Indices = and y can take values 0 or 1,
and U; transforms the tensor product of functions 1, and 1, into

Us (0, ® 1) = ¥y @ [f(2) B, (48)

The symbol @ that appears in equation (48) represents an operation that leaves v,
unchanged if f(xz) = 0, and “Hips” 1, to its complementary value ¢ if f(z) = 1. We can
formally describe this relationship as

Yy, if f(z) =0
T by = ' 49
Jlay o {wg, it f(z) = 1)

where ¥ denotes the complement of y.

Since equation (48) tells us how operator U ¢ transforms basis functions v, ® 1, we can
apply it to any function in this space. This pertains to function ¢, ® v _ as well, which can
be represented as

Dr® Y- = 5 (o) (o —) = 5o Blo) — 2 (Yo ® Yu)+

1 | (50)
+§(¢1 ® o) — 5(1/}1 ® 1)
Since U s is a linear operator, U #(1+ ®1_) becomes
. 1. 1
Up(py @) = §Uf(¢o®1/)o)—§Uf(l/}o®¢1)+ -
51

+%0f(¢1 ®1bg) — %Uf(wl ® 1)

It is hopefully obvious that each of these four terms conforms to the definition provided in
(48), and can therefore be evaluated precisely.

Using expression (51) as a starting point, it can be shown that operator U ¢ transforms
the tensor product ¥, ® 1 _ into

Uy ®) = $a @ 95 (52)
where]]
_ _1N\f@O)=f0)7] ., —_
g = \/51/)0 + [(1)] \/51/)1 (53)
and]
v = —=(=1)7O (g —) = (=1)/ Oy (54)

V2
(see the textbook for a derivatior}). A schematic description of this relationship is provided
in Fig. 11, which indicates that Uy places particle 1 in state ¥4, and particle 2 in state ¢p.

vy O——— ——O Y4
Uy

P O— —O Yp

Figure 11: Quantum “black box” with input ¥, ® ¥_.

14

How does this transformation help us determine whether function f is constant? To see
that, we should first observe that the difference f(1) — f(0) (which appears in the expression
for 104) can take the values shown in Table 6.

fO0)) | (1) = f(0)
0 0 0

0 1 1
10 -1
11 0

Table 6. Possible values for f(1) — £(0).
Using this table, it is easily verified that

o[L it £(0) = f(1) 55)
| -1 EF0) # £(1)

If we now apply the Hadamard operator to the first particle and leave the second one
intact, we obtain

Vo = (H @ 1) (1ha ®bp) = (Hpa) @ g (56)
Observing that . .
[:IQ/JA = —QIA{Z/}O —+ 7 |:(—1>f(1)_f(0)j| [—AIQ/)I =

1 V2 1 i 1 (57)
= 5(1/10 + 1) + 2 [(=1)/ =707 E(% — 1)
function H 14 can be expressed as
Hyy = %(1/)0 + 1) + % [(=1)/W=TO] - (g — 1) (58)

~ When f(z) is constant (i.e., when f(0) = f(1)), we know that (—1)/=/© equals 1, so
H+ 4 becomes

. 1 1
Hyy = §(¢0+2/)1)+§(¢0—1/)1) = 1o (59)
If £(0) # f(1), expression (55) indicates that
(1) W10 = 1 (60)
in which case]]
Hypy = §(¢o+¢1)—§(¢o—l/f1) =1 (61)

The schematic diagram provided in Fig. 12 illustrates how expressions (59) and (61) can
help us determine whether or not f(z) is a constant. It shows that we can do so with a single
measurement on the first particle in basis {1, ¢; }, while any classical algorithm requires
two separate evaluations of function f(z) (as well as a comparison of the obtained results).

15

Yoo 1 Y+ YA " . Yo it £(0) = F(1)
!) Hi G it £0) # ()
| Uy |
(e E f{ ¥ B ; O (=1)7 Oy _

Figure 12: Schematic representation of Deutsch’s algorithm.

The Deutsch-Josza Problem

The potential advantages of this approach become even more evident if Deutsch’s problem
is generalized to include the case when x can take any value in the set N = {0,1,2,...,2"—1}.
In this scenario, function f(z) is once again allowed to take only values 0 and 1, but we will
additionally assume that it can either be constant for all possible x, or can produce an equal
number of zeros and ones on set N (such a function is said to be balanced).

Since x can now take 2" different values, in the worst case scenario a conventional algo-
rithm would have to check more than half of them before it could establish with certainty
whether or not f(z) is constant. To see why this is so, imagine that the first 2"~ tests
produced f(x) = 1. At this point, it still wouldn’t be clear whether f(z) is constant or not,
since a balanced function could conceivably have values f(x) =1 for x € {0,1,...,2""1 -1}
and f(z) = 0 for z € {2"71,...,2" — 1}. To rule out this possibility, we would obviously
have to perform one more test, which brings the total number of evaluations to 27! + 1.

Since the computational complexity of this process grows exponentially with n, we can
safely say that such a task would eventually overwhelm any classical computer, no matter
how powerful it is. Even if it were performed in parallel, we would still need a prohibitively
large number of processors.

In contrast, a quantum computer with n qubits can determine whether f(z) is constant
or balanced from a single measurement, using the so-called Deutsch-Josza algorithm. One
does not need to know the details of this algorithm in order to recognize that it represents a
remarkable improvement over the classical approach. The fact that something like this is pos-
sible suggests that the quantum paradigm can dramatically speed up certain computational
tasks, and can allow us to solve entire classes of problems much more efficiently.

When making such claims, however, it is important to keep in mind that the classical
strategy which we described above is deterministic, while the quantum one is not. As a
result, we should exercise some caution when assessing the actual speed-up that quantum
computers can achieve in this case. What is often forgotten in such discussions is that
probabilistic classical algorithms can solve the Deutsch-Josza problem far more efficiently,
and do not require 2" + 1 evaluations. Such algorithms typically compute f(x) for several
randomly chosen values of x, and can often establish whether this function is constant or
balanced after only a few iterations. If we take that into account, the advantages that the
quantum approach offers scem considerably less dramatic.

16

Grover’s Algorithm

Suppose that we have 2" possible solutions to a problem, and that only one of them is
correct. Suppose further that we have numbered these solutions from 0 to 2™ — 1, and that
we have a “black box” which can precisely identify whether or not a solution is correct when
we present its integer equivalent (which is denoted by z) at the input.

To make things a little more concrete, let us assume that the correct solution corresponds
to x = C. This allows us to define function

B 1 fz=C 62
f@) = 0 if x4 C (62)

which can distinguish correct solutions from incorrect ones. This function is not known to
us, but we will assume that the “black box” can evaluate it internally (as was the case with
Deutsch’s algorithm). Under such circumstances, the “black box” will operate in the manner
shown in Fig. 13, producing a 1 only when the correct value of x appears at the input.

rO0»— [0 f(x)

Figure 13: “Black box” for identifying function f(z).

If we were to approach the problem in this way, it could take as many as 2" —1 tests before
we find the correct answer, since we would have to examine the various possibilities one by
one. It turns out, however, that there is a quantum algorithm which allows us accomplish
this task in less than /2" steps, which can result in a significant reduction in execution time
when n is large.

In order to see how this algorithm works, let us consider a system that consists of n
qubits. We will assume that its overall state is

"= H () = = Y (63)

where N = 2", and basis functions W, represent the possible states that could be observed
if we were to measure all n particles simultaneously. In keeping with the notation that we
introduced previously, these basis functions should be interpreted as Wy = Wqq. o, ¥ =
Yoo..1, -+ 5 Unvor = Wy

Remark 3. We should recall that state ¥ in (63) can be easily obtained using n

Hadamard gates, since
an—1

1
HO() = 3 s (64)

Since we decided to label the “correct” solution by C', we will be interested in the corre-
sponding basis state W. This is obviously the state that we would like to observe when we

17

make a measurement on all n particles, since the binary string that we obtain will correspond
to x = C. It is not clear how to accomplish that, however, because the probability of each
outcome is the same when the system is in state W. This follows directly from expression

(63), which indicates that
1* 1
ro=(7) -3 (63
for every choice of z.

The challenge, then, is to determine how this system should be manipulated in order to
ensure that We becomes the most likely outcome when a measurement is made. Grover’s
algorithm provides an elegant way to do this, and offers a systematic procedure that will
allow us to identify the correct solution. We will explain how it works by breaking it down
into three simple steps (all intermediate derivations are provided in the textbook).

Step 1 of Grover’s Algorithm

We begin by introducing an operator U ¢ that transforms the tensor product of basis state
W, and function v_ as)
Up (W, @ ¢) = (=1)/ D0, 2 ¢ (66)

The function f(x) that appears in (66) is the same one that we introduced in (62) - it equals
1if z = C, and is 0 otherwise.

The effect of this operator is schematically described in Fig. 14. As before, we will
assume that the quantum “black box” can internally evaluate f A(T) when presented with

function ¥, at the input. From this figure, we can conclude that Uy changes the sign of ¥,
if x corresponds to the correct solution, and leaves it intact otherwise.

O O
v,{ . A Oy ()@,
: Uy :
O O

_ o0 o YP_

Figure 14: The effect of operator U ¢ on function W,.

Because t_ remains unaffected by this transformation, it is common practice to represent
expression (66) as
Uy, = (—1)/), (67)

This is not entirely correct, of course, since U 7 operates on the tensor product ¥, ®1_ (and
not on W, itself). We can afford to disregard this discrepancy, however, because it does not
affect the final result.

18

Step 2 of Grover’s Algorithm

Let us now return to function W, which represents the input for Grover’s algorithm. Since
we are interested in identifying component W, it will be convenient to represent W as

U (68)

1 1
— ot —— S,
TR 2
This expression becomes more compact if we introduce function

W = ﬁ S, (69)

z#C
in which case (68) takes the form

1
U=—Us+ Vs 70
T e+ o (70)
The problem with this representation is that function ¥ is normalized (since all basis
states satisfy (U,, ¥,) = 1), but U4 is not. For that reason, it is better to work with function

N
Uy = N1 Ve (71)

which differs from Ws by a constant multiplier. It is not difficult to see that this function

satisfies
(T, Uy =1 (72)

and
(To,) =0 (73)

which makes subsequent derivations easier.

Remark 4. The subscript W in Wy, reflects the fact that all components of this function
correspond to “wrong” solutions.

Using the notation that we just introduced, we can rewrite U as

1 N -1
UV=—UVo+Vs=—"Vs+1/——VU 74
\/N C C m C N w ()

For the puroposes of our analysis, it will also be useful to define function

1

N -1 1
P — Y
N Yo ~ W (75)

\T]:

which satisfies <\If,\I/> = 0 and <\TI,\II> = 1 (both of these properties are easily verified).

Setting
1
0=gin ! — <= sinf = 76
(7%) (76)

-

19

we can now express functions W and ¥ in a more compact form, as

1 N -1
U=—VUs+4/—— Uy =sinf@ Uy +cosd@ U 77
T ve VW c W (77)

- N -1 1
N\I/W =cosO@ W —sinf Uy, (78)

and

We will see why it is helpful to work with sines and cosines shortly.

Step 3 of Grover’s Algorithm

Our final step will be to introduce an operator Uy which produces
Ug¥ =0 (79)
Uy¥ = -0 (80)

when applied to functions ¥ and W. Such an operator is not difficult to construct, and
satisfies

Uq,(f]flll) = sin 30 W + cos 30 Uy, (81)

If we apply this pair of operators k times, we obtain
(UgUp)EW = sin(2k 4 1)0 Wi + cos(2k + 1)0 Ty, (82)

(a derivation of this result is provided in the textbook).
To see why expression (82) is useful, we should recall that

N 1 1
vy L ALt ®

Substituting (83) into (82) allows us to rewrite this expression as

SN 2k +1)0
(OuU)T = [sin(2k + 1)0) Te + [M} U, (84)
N—1
z#C
Since functions {Wo, Uy, ..., Wy_1} constitute an orthonormal basis, the coefficients next to

them can be associated with probabilities. This allow us to conclude that the probability of
observing state W¢ is

P(Ue) = |sin(2k 4 1)) (85)
when we measure all n particles simultaneously. Any other outcome (which necessarily
corresponds to x # (') has probability

|cos(2k + 1)6]?

P(\Ilz>: N —1

(86)

Since our objective is to maximize the likelihood that we will record state ¥ when we
perform a measurement, it would be desirable to pick k in such a way that

sin(2k+1)0 =1 (87)

20

is satisfied. This will obviously be the case if (2k + 1)§ = 7/2, which means that &k should
be chosen as

(88)
Recalling that

1
sinf = — 89
VN (%)
and that sinf ~ 6 when 6 is small (which is the case if N is a large number), we can

approximate 6 as

1
0~ (90)

Substituting (90) into (88), it follows that the optimal value for £ is

T 1 1
k=—-VN-—=-=—-v2"r—— 1
4 2 4 2 (91)
Observing that
ANV TREN (92)
4 2

it follows that Grover’s algorithm requires fewer than /2" steps.

When interpreting expression (91), it is important to keep in mind that this condition
usually cannot be satisfied exactly, since k must be an integer. Nevertheless, we can claim
that the probability of observing state We (and therefore of finding the correct solution)
will be very high if we round k off to the closest whole number. To illustrate this point,
suppose that n = 20, in which case N = 2" = 1,048,576. Equation (91) will then produce
k = 803.7477, which which suggests that we should choose £ = 804. If we do so, the
probability of registering W will be

P = |sin[(2k + 1)6]]* = 0.999999756965361 (93)

so it is fair to say that such an outcome is virtually certain.

Remark 5. Note that the number of steps needed to identify the correct solution is
1,304 times smaller than the worst case scenario for the classical approach (remember that
this approach could require as many as 2" — 1 = 1,048,575 steps if we are really, really
unlucky).

21

