ELEN 162
A. 1. Zecevic

Lecture Notes for Week 2

Matrix Norms

The notion of a norm can be extended to matrices as well. This can be done in several
different ways, the most straightforward of which relies on the following definition.

Definition 1. Let ||-|| denote a vector norm in R™. The matrix norm induced by ||-|| is
defined as
Al = o [ 4¢] 0

The term “induced norm” is appropriate in this context because the matrix norm defined
by (1) is uniquely determined by the choice of vector norm (note that Az is a vector).

Since Definiton 1 is not very “user friendly”, we need to establish what it means for
different choices of vector norms. In order to do that, we will need the following definition.

Definition 2. Let A be a real matrix whose eigenvalues are {A1, A2, ..., A\, }, and let

p(A) = max| | (2)

denote the eigenvalue with the largest magnitude. This eigenvalue is referred to as the spectral
radius of A.

Combining this definition with Definition 1, it can be shown that the matrix norm induced
by the Euclidean vector norm (which is denoted ||Al|,) can be computed as

[A[l; = v/ p(AT A) (3)

It can also be shown that the matrix norm induced by the weighted infinity norm (denoted
|A]|2)) can be computed as

w 1 <
14]le = max — > "Jaijlw; (4)
1 ,7 =1
In the special case when w; = ... = w,, = 1, this norm reduces to

14l = max ) _|a] ()

j=1

Proofs that all three expressions conform to (1) are provided in the textbook.

It is not difficult to show that any induced matrix norm must satisfy the following four
conditions:



1. ||A]| > 0 when A # 0, and ||A]| = 0 if and only if A = 0.
2. For any ¢ € R we have that ||cA|| = || [|4]|.
3. Given a pair of matrices A and B, inequalities
A+ B[ <Al +B] (6)

and
[AB| < [|A][ ]| B]] (7)

must hold.
4. For any vector x € R" the corresponding matrix norm must satisfy

[Az][ < [|A] ] (8)

Our next example shows how different types of norms are computed, and allows us to
make some comparisons between them.

Example 1. Consider matrix

1 0 -2
A=| 0 4 -5 9)
-1 2 3

which is obviously not symmetric. In order to compute its Euclidean norm, we first need to
form matrix

2 -2 -5
ATA=| -2 20 —14 (10)
-5 —14 38
whose eigenvalues are
0.30988
MATA) = 13.7757 (11)
45.91442
From (11), it follows that the spectral radius of this matrix is
p(AT A) = max |\ (AT A)| = 45.91442 (12)

and we have that
|All, = v/p(ATA) = 6.776 (13)

To evaluate the infinity norm, we need to form matrix

| Al =

==
N =~ O
W Ot DN
—~~
—_
S
N—

and add up the elements in each row. If we do so, we will easily verify that

3
1] o ngxzwijl =9 (15)

j=1
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This value is obviously larger than the one obtained using the Euclidean norm, which is
something that we should keep in mind.

When it comes to the weighted infinity norm, the result will depend on how we choose
parameters wy, wo and ws. If we set w; = 1, wy = 0.5 and w3 = 0.4, for example, we obtain

1 n
L= —) Jaylw; =18 (16)
w1 iz
1 n
22 = — Z|(I2j|w]' = 8 (17)
Wy “—
j=1
and
1 n
23 = — Z|(I3j|w]' =38 (18)
w3 “—
j=1
which implies that
w 1 ¢
14]ls = max — > laijlw; =8 (19)
P

The fact that this value is smaller than the one we obtained in (15) indicates that the value
of ||A]|Z, can be reduced (to some extent, of course) by an appropriate choice of vector w.
This added degree of freedom can be very useful, particularly in the context of iterative
methods.

Quadratic Forms
A quadratic form is defined as the scalar product
(x, Ar) = 27 Ax (20)

where A is assumed to be a symmetric matrix. Expressions of this sort are commonly en-
countered in optimization problems, and are also associated with certain iterative techniques
for solving systems of linear algebraic equations (such as the conjugate gradient method, for
example).

Definition 3. A symmetric matrix A is said to be positive definite if all of its eigenvalues
are positive.

The following theorem provides necessary and sufficient conditions for positive definite-
ness. In this case I will actually provide a proof, since the arguments that I will use for this
purpose will be helpful for Homework 1.

Theorem 1.4. Let A be a symmetric matrix with distinct eigenvalues. Then,
T Az >0 (21)

for any nonzero vector x in R™ if and only if A is positive definite.



Proof. If A is assumed to be positive definite, then all of its eigenvalues must be positive.
Let us now set y = T 'z, where T is a matrix whose columns are the normalized eigenvectors
of A. This definiton obviously implies that x = Ty, which allows us to rewrite the quadratic
form as

v’ Ax = yTTT ATy (22)

Recalling that 7-! = T7 when matrix A is symmetric, this becomes
eTAx = y"TT ATy = y" T ATy (23)

From Lemma 1.7, we also know that

M O - 0

» 0 X --- 0
AT =A=| 2 (24)

0 0 - M\,

where A represents the Jordan canonical form. Consequently, expression (23) becomes

eTAx = " T ATy = y" Ay = Z)\ny >0 (25)

i=1

To rule out the posibility that y = 0, we should observe that  # 0 by assumption. If
the corresponding vector y = T~z happened to be 0, we would have

T 'z =y=0 (26)

which is a contradiction, since system (26) has a unique solution (which is = 0, because
T'is a nonsingular matrix).

In view of that, we can conclude that if x # 0, the corresponding vector y = T 1z will
satisfy y # 0 as well. Recalling that A\; > 0 (i = 1,2,...,n) by assumption, it follows that

v Ax = Z)\ny >0 (27)

i=1

Suppose now that
2T Az >0 (28)

for all z # 0, but that A is not positive definite. In that case, at least one of its eigenvalues
will satisfy Ay < 0. To see why this leads to a contradiction, let us denote the eigenvector
that corresponds to A; by xx. Substituting this vector into the quadratic form, we directly
obtain

which violates condition (21). Q.E.D.



Functions of Matrices

Given a function f(x) whose Taylor series expansion has the form

SR,

fla) =3 (30)
we can define the corresponding function of matrix A as
—SE0)
fA) =) A (31)
k=0

The individual terms in this sum have a straightforward interpretation, since they represent
powers of A.

The problem with expression (31) is that it cannot be evaluated directly, since it involves
an infinite sum. To see how this difficulty can be resolved, let {A1, Ag,..., A\, } denote the
eigenvalues of A, and let {z1,z,...,2,} be the corresponding eigenvectors. For the sake of
simplicity, in the following we will assume that the eigenvalues are real and distinct, and that
function f(z) and all of its derivatives are finite in points x = A; (¢ = 1,2,...,n). When this
is the case, we say that f is defined on the spectrum of A, and sequence (31) is guaranteed
to converge.

We now proceed to show that f(A) has the same eigenvectors as A, and that its eigen-
values are {f(A1), f(X2), ..., f(An)}. In order to do that, we should first observe that

for any positive integer k. This is easily verified by induction, since

and so on. Recalling that
> R (0 > R (0
fA)z; =) k,( )A’“xi =1 k,( ))\f z; (35)
k=0 k=0
and that ~
S = s (30
k=0 ’
the relationship
f(A)z; = f(Ni)z (37)

follows directly.
How can we make use of this result? In order to see that, let us form a matrix

T:[znl Ty - a:n} (38)



whose columns are the eigenvectors of A. When we multiply 7" on the left by f(A), we obtain

FAT = [f(A)z1 f(A)za ... f(A)xy] (39)
which becomes
fAT = [f(M)x1 f(A2)ze - .o f(An)zn] (40)

by virtue of (37).
We should note at this point that the right hand side of expression (40) can be rewritten

PO FO)ss .. F(hJa] = T (M) ()

where 00 0 .
=] Lo ()

0 0 f(An)

If we now combine (40) and (41), we obtain
(AT =Tf(A) (43)

and therefore

fA) =TT (44)

This result is useful because it provides us with a straightforward way to compute f(A)
once we have determined the eigenvectors and eigenvalues of matrix A. The following ex-
ample illustrates how this approach works in practice.

Example 2. Let
A=| 2 72 (45)
-2 4
and suppose that we want to compute function
f(A) = e 4 cos(A) (46)

In order to do that, we first need to determine the eigenvalues and eigenvectors of matrix A,
which happen to be

[ —0.85065 |
AM(A)=0.7639 — x;= | 052573 | (47)
and _ i}
—0.52573
A2(A) =5.2361 — x5 = 0.85065 | (48)

in this case. Using this information, we can compute matrices 7" and A as

—0.85065 —0.52573
= —0.52573  0.85065 (49)



and

0.7639 0
A= { 0 5.2361 ] (50)
respectively.
Let us now define function f(z) as
f(z)=e"cosx (51)

The corresponding matrix function f(A) will then have the form

0 e cos Ay 0 0.00266 (52)

e M cos A 0 0.33639 0
() = : |- ]
Recalling that matrix A is symmetric, we know that T-! = T7, so matrix f(A) can be
computed as
B i r [ 0.244147 0.149247
FA) =THNT = THMT" = { 0.149247 0.094900 (53)
Remark 1. Note that matrix f(A) is symmetric, which is to be expected (according to
Lemma 1.9 in the textbook).



Functional Spaces

Functional spaces are linear vector spaces whose elements are functions. The one that we will
be most interested in consists of complex-valued functions of real arguments which satisfy

/ |f(z)|*dz < oo (54)

(such functions are said to be square integrable on interval (—oo o0)). In this space, it is
assumed that the addition of two functions f and g produces a new function h = f + g which
is defined as

hz) = f(z) + () (55)

Similarly, multiplying function f by some complex number c is assumed to produce a function
¢ = cf such that

§(z) = cf(z) (56)

When addition and multiplication by a number are defined in this way, it is not difficult to
show that all the properties of linear spaces are satisfied.
The scalar product in this space is defined as

(f.9) = / 7 (@)g(x)dz (57)

where f*(z) denotes the complex conjugate of f(x). Such a definition ensures that the
following four identities hold for any choice of a, 3, f and g.

1) (af,g) =a*(f,g)
2) (f,Bg) = B(f,9)

3) <Zaifi>g> = Zaf(fi,g) (58)
4) (f, Zﬁi9i> = Zﬁi<f, i)

All of these relationships follow directly from expression (57) and the basic properties of
integrals.

If we assume that functions {¢1(z), ¢2(z),... } constitute a basis in this space, then any
other function f(z) that belongs to it can be expressed as

flz) = Z Bii() (59)

where 3; (i = 1,2,...) are constant coefficients (which can be complex in general). Such an
expression is very similar to the ones we have encountered before, except for the fact that set



{p1(x), p2(x), ... } now consists of functions rather than vectors or matrices. Such a basis
is said to be orthonormal if

<¢<>¢<>>—{1’ o (60)
RO 0, i

with respect to the scalar product defined in (57).

When discussing the properties of bases in functional spaces, it is important to recognize
that they can contain infinitely many elements (unlike the bases that we considered previ-
ously). The following two examples illustrate what set {¢1(x), ¢2(x),... } might look like in
such cases.

Ezxample 3. A function f(¢) is said to be periodic with period T if it satisfies

fE+T) = f(t) (61)

for any choice of t. It is well known that any such function can be expressed in the form of
a Fourier series

f(t) =ao+ f: a, cos(nwt) + f: by, sin(nwt) (62)

where w = 27 /T. The coefficients {ag, a1, as, ...} and {b1,bs,...} in (62) are constant, and
can be computed directly from function f(t).

In the special case when f(t) = f(—t), we say that the function is even, and the corre-
sponding Fourier series reduces to

ft) =ao+ Z a,, cos(nwt) (63)

This expression indicates that all even periodic functions with period T' belong to an infinite
dimensional linear space whose basis are functions

{1, cos(wt), cos(2wt), cos(3wt) ...} (64)

Ezxample 4. Any analytic function f(x) can be expressed in terms of its Taylor series
expansion

(o @]
f(z) = Z apz” (65)
k=0
In this expression, the coefficients a;, are given as

A
Kl

Q. = (66)

where f*)(0) denotes the k-th derivative of f(z) evaluated at z = 0. It is not difficult to see
that all such functions belong to an infinite dimensional space whose basis are functions

{1,z,2* ...} (67)



Linear Operators

Before applying these concepts to quantum mechanics, we also need to say a few words about
operators, and how they act on the elements of functional spaces. In general, an operator
can be thought of as a mapping that transforms a given function f into another function
¢ that belongs to the same (or possibly different) space. We can formally represent this
transformation as

o =Af (68)

where A denotes the operator.
An operator A is said to be linear if it satisfies

A(af + Bg) = aAf + BAg (69)

for any two functions f and g (the coefficients a and (3 in (69) are assumed to be complex
numbers in general). Note that matrices satisfy this property as well. Indeed, given a vector
x € R", the operation

w= Ax (70)

transforms x into some other vector w € R", and it is easily verified that
A(ax + By) = aAz + [Ay (71)

With any linear operator, we can associate a set of eigenvalues {)\;} and corresponding
eigenfunctions {¢;} which satisfy

Agi = Ngy  (i=1,2,...) (72)

Such a definition closely resembles the one that we used in linear algebra, the main difference
being that we are now dealing with eigenfunctions instead of eigenvectors.

Remark 2. Strictly speaking, this expression applies only to operators that have a
discrete spectrum. We can use the above definition without any loss of generality, however,
since this is the only type of operator that is of interest in quantum computing. You will see
examples of operators with a continuous spectrum in Homework 2.

In cases when the basis consists of a finite number of elements, it is often convenient to
specify how operator A acts on the basis functions. We will see that this actually gives us
an alternative way to define operator A, since it allows us to determine how A acts on any
other function.

To see how that works, suppose that functions {1, s, ..., &, } constitute an orthonormal
basis in space S, and that A

A& =9, (1=1,2,...,n) (73)

(where functions {p;} are known). Since any function f that belongs to this space can be
represented as

f=ali+ @b+ ..+ anén (74)

applying operator A to it will produce a new function
g=Af = a1 A& + A& + ..+ A&, = a1pr + ana + ..+ A (75)

10



This function is easy to evaluate if we are given f, because its components {;} are known,
and coefficients {«;} can be computed as

Remark 3. Expression (76) follows directly from the fact that functions {¢;} are ortho-
normal.

The following two examples show how we can use this approach to compute eigenvalues
of operators and the normalized eigenfunctions that correspond to them. In both cases,
we will be dealing with a two dimensional functional space S in which functions vy and 1,
constitute an orthonormal basis. This scenario is of interest to us because it frequently arises
in quantum computing.

Ezample 5. Suppose that we would like to determine the eigenvalues and eigenfunctions
of operator X, which transforms basis functions 1y and 1, as

Xtpo = 1y (77)
and R

X1 =10 (78)
respectively. If ¢b € S is an eigenfunction of this operator, we know that it must satisfy

X1p = M (79)

where A is a number (which can be complex in general). Since 9 is an element of S, we also
know that it can be expressed as

Y = agtho + a1 (80)
Using (77), (78) and (80), we can rewrite X1 as
X1p = Xt + 0n X¢hy = agthy + g (81)
This allows us to express (79) as

X = agthy + a1ty = Aoty + a1thy) (82)

which is convenient for our purposes. If we now group the terms next to 1y and 1, (29)
becomes

(Oél — )\OZQ)’QZ}() —+ (Oé() — )\Oél)’(ffl = 0 (83)

If we now form the scalar products

(0, (a1 — Aag)tbo + (a0 — Aan)ihr) = (1 — Aag) (Yo, Po) +

(84)
(o — Aar) (Yo, Y1) = a1 — Ao = 0

and
(Y1, (o = Aavg)ho + (a0 — A1) = (a1 — Aag) (Y1, o) +

(85)
+(Oéo — /\061) <’Lp1,’l/)1> = Qg — /\061 =0

11



we obtain two conditions that coefficients oy and a; must satisfy. In matrix form, these
conditions can be expressed as
—A 1 Qp 0
=L 6

which implies that coefficients ag and a; can have nonzero values only if and only if
AN =X —-1=0 (87)

Based on this equation, we can conclude that the eigenvalues of operator X are \; = 1 and
Ao = —1.

In order to find the eigenfunction that corresponds to A\; = 1, we need to substitute this
value into (86). If we do so, we obtain

[ -1 1] ap | 0]

1 —1]|a| |0] (88)
which reduces to ) o } L
—1 1 (7)) . 0
0 0][ o] 10 | (89)

sfter one step of Gaussian elimination. Setting a; = t (where ¢ is an unspecified number)
and rewriting the first equation as
we can easily compute og as

Qp — t (91)

This tells us that the eigenfunction that corresponds to A\; = 1 (which we will denote by ¥ 4)
has the general form

ha = oo + a1 = tahy + iy (92)

Since eigenfunctions need to be normalized in quantum mechanics, )4 must additionally
satisfy

(Ya,%a) = (oo + a1v1, agtho + artpr) =1 (93)
If we expand this expression and recall that i)y and 1, are orthonormal, we obtain
(YA, ¥a) = afao (Yo, o) + ajon (b1, ¥1) = |aol* + |aa* = 1 (94)

Observing that oy = a; = t in this case, it follows that ¢ should be chosen so that it satisfies

1
|t|:% (95)

We should note at this point that (95) does not specify parameter ¢ uniquely, since it can
take values such as 1/v/2, —1/v/2, i/v/2, etc. To keep things simple, we will set ¢ = 1/1/2,
in which case ¥4 becomes

1 1
Ya = E% + Ewl (96)

12



Proceeding in a similar manner, we can determine the eigenfunction that corresponds to
A2 = —1. In this case, system (86) becomes

L lla] = e

and ag and «; have the form ag = —t and oy = t. If we apply the normalization condition,
we easily obtain
1 1
=——Yo+— 98
VB \/5@/}0 \/57111 (98)
Example 6. In this example we will consider the so-called Hadamard operator, which

plays a key role in quantum computing. This operator (which is typically denoted by H )
transforms basis functions ¢y and v as

1

Hepy = —=(tho + ¢1) (99)

S

2

and
1

Hipy = —=(tho — 1) (100)

S

2

Since the eigenfunctions of H must satisfy

Hip = N (101)
for some number A\, we have that
Hip = H(ogto + arthr) = aoHbg + an Hipy = Aoty + a1ty (102)
Invoking (99) and (100), this becomes
=2 (W0 + 1) + =t — 1) = Maoto + arthy) (103)

V2 V2

Grouping the terms next to ¢y and 1, we obtain

og + a1

wo{ 7 —/\ao]+w1{ N —/\al]zo (104)

Since 1y and 1, are linearly independent, condition (104) will be satisfied if and only if

Oé()—l—Oél

—Aap =0 (105)

&

and

—Ada; =0 (106)
If we express these two equations as

R | EI S Y

13



it become apparent that oy and a; can take nonzero values only if A satisfies
AN) =212 -2=0 (108)

From this, we can conclude that the eigenvalues of Hare \; =1 and \y = —1.
The eigenfunction that corresponds to A; = 1 can be found by substituting this value
into (107) and solving it. If we do that, we obtain

S0 all)R]

%[_0.40142 éHZﬂ:{g] (110)

after one step of Gaussian elimination. Setting a; = ¢, we can now easily compute g as

which reduces to

g = 2.4142t (111)

from the first equation.
Because eigenfunction

Ya = agthy + auth (112)

needs to be normalized, coefficients ay and a; must satisfy
laol® + [aa|* = 1 (113)
Given the expressions that we obtained for ay and a4, this condition is equivalent to
(2.4142)°| t P+ |t =1 (114)
Since t = 0.38268 is a solution of equation (114), we can conclude that
Y4 = 0.92388 + 0.382681), (115)

is an eigenfunction of H that corresponds to A; = 1.
Proceeding in a similar manner, it is easily verified that the normalized eigenfunction
that corresponds to Ay = —1 has the form

Wp = —0.382681 + 0.92388¢); (116)

We will not derive this result explicitly, but it could be a useful exercise for those who want
some additional practice.
Self-Adjoint and Unitary Operators

In order to distinguish between different types of linear operators, it will be useful to intro-
duce the following two definitions.

Definition 4. Given a linear operator fl, its adjoint operator (denoted AT) is an operator
that satisfies

(Af,g) = (f. Alg) (117)

14



for any pair of functions f and g that belong to the functional space.
Definition 5. Operator A is said to be self-adjoint (or Hermitian) if A = Af.

Self-adjoint operators have many similarities with symmetric matrices. The following
theorem describes one of them (this particular property is very important in quantum me-
chanics).

Theorem 1. Let A be a self-adjoint operator with eigenvalues {A;, Ag,...}. Then,
each \; must be a real number, and the corresponding eigenfunctions {¢1, ¢, ...} must be
orthogonal.

Another important class of operators are so-called unitary operators, which are defined
in the following way.

Definition 6. Operator U is said to be unitary it Ut =00 =1 , where I denotes
the identity operator (this operator satisfies I f = f, which means that it leaves function f
unchanged).

This definition has two corollaries that are very useful in quantum computing. Since they
are quite straightforward, we will prove both of them.

Corollary 1. If U is both unitary and self-adjoint, it satisfies U=0""

Proof. The proof follows directly from the definition of a unitary operator, since
Ut =1 (118)

implies that Ut=0-". Given that U is assumed to be self-adjoint, we also have that Ut=0 ,
so we can conclude that U = U~!. Q.E.D.

Corollary 2. All the eigenvalues of a unitary operator U must have the form \, = e,

Proof. Suppose that Uis a unitary operator whose eigenfunctions are {£1,&,...}. In
that case

(Uér, Ubr) = (M M) = NMu(€ro o) = [ Ml (ks ) (119)
Since U is unitary, this scalar product can also be expressed as
(U, Ute) = (&, UTU&) = (&, &) (120)
Subtracting (120) from (119), we obtain
(IA1? = 1) (& &) = 0 (121)

which implies that |A\;| = 1 (since (&, &) # 0). Given that Ay is a complex number in
general, it follows that ' '
e = | M| e = e (122)

Q.E.D.
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Matrix Representations of Operators

When operators have a finite number of eigenfunctions, it is often convenient to represent
them in matrix form. To see how this works, suppose once again that S is a two dimensional
functional space with an orthonormal basis {1, ¢}, and that A is a linear operator in this
space. If A is applied to function

Y = agtho + a1 (123)
we obtain a different function R
o= Ay (124)
whose representation in basis {1y, 11} has the general form
¢ = potho + P11 (125)

It is not difficult to see that operator A will be fully defined if we are able to compute
coefficients pg and p; for any choice of oy and a;. We can say this because py and p; specify
function ¢ uniquely, and o and «; are known once we are given function .

To see how this can be done, we should first observe that both A% and Awl belong to
space S. As a result, we can represent these functions as

Avpg = antho + a1t (126)

and R
A = antpo + azih (127)

This allows us to rewrite expression (124) as
¢ = Ay = apArhy + ar Ay = ap(ar1to + ar2th) + ar(azio + azi) (128)
After grouping the terms on the right hand side, function ¢ can be rewritten as
¢ = (a1 + a1a21)Yo + (a2 + a1a22)) (129)
Subtracting (125) from (129), we now obtain
(@oa11 + a1ag1 — po)bo + (awaiz + azasy — p1)Pr =0 (130)
Recalling that functions ¢y and 1), are orthonormal, this implies that
Po = Qoair + ayasy (131)

and
P1 = Qpa12 + Q1022 (132)

We can express these two relationships in matrix form as
Po | _ | @11 G21 Qo (133)
P1 aiz G22 Qg
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Since the coefficients of matrix

a1z Q22

A= (134)

correspond to Aty and Ay, it follows that matrix A is uniquely defined by operator A and
basis {1, 11}. We therefore refer to it as the matriz representation of operator A in basis

{tho, ¥n}.

Once we know matrix A, we can easily compute coefficients py, and p;, and therefore

p = A¢ = potbo + P11 (135)

for any choice of function ¢ € S. The only information that we need for this purpose are
the coefficients ay and «; that correspond to 1 in this basis. The following two examples
illustrate how this idea can be applied to operators X and H (which we already considered
in Examples 5 and 6).

Example 7. Suppose that operator X transforms function Y = ag + a1y into function

¢ = X1 = potbo + prthy (136)

In order to relate coefficients py and p; to oy and oy, we need to express X 1o and X Yy as

Xtho = antho + arath (137)

and )
X1 = ag1o + ani (138)

and compute coefficients a1, a2, as; and ass.
Recalling that operator X is defined by relations

Xepo =t (139)
and R
X1 =g (140)
it is easily verified that
a1 = 0
app =1
. (141)
91 = 1
Q99 = 0

(these values are obtained by comparing (139) and (140) with (137) and (138)). From this,

A

we can conclude that the matrix representation of X in basis {1, 1} is

| @11 G21 | 01
X_{UJlZ az2}_{1 0] (142)
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Example 8. Let us consider the Hadamard operator, which is defined by relations

Hiy = %1/10 + %@/}1 (143)

and

Hyy = (144)

1 1
:7§¢b-—:7§¢H
As in the previous example, we will assume that this operator transforms the state ¢ =
oo + a1 into R

o = Hip = potho + p1n (145)

To see how coefficients py and p; are related to ap and «; in this case, let us express Hiy
and Hi as R

Hio = antho + a1y (146)

and R
Hipy = aztpo + azn (147)

Comparing (146) and (147) with (143) and (144) we obtain

1
an = E
1
12 = E
1 (148)
21 = E
1
A2 = —— =

V2

which implies that the matrix representation of H in basis {0, 91} is
ap; G I 11 1
H— - 149
[ a2 G2 ] V2 l 1 -1 ] (149)

If we compute the eigenvalues of matrices X and H, we will find that they match the
eigenvalues of operators X and H (which we determined in Examples 5 and 6). This corre-
lation points to a more general result, which can be stated as follows.

Theorem 2. Operator A and its matrix representation in basis {1, ¢4 } have the same
set of eigenvalues.

Coordinate Transformations

Suppose now that our functional space has two different orthonormal bases, {1, 1} and
{&0,&1}. In that case, any function 1 that belongs to this space will have two different (but
equivalent) representations

Y = oo + i (150)
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and
Y = Bobo + 511 (151)

How can we relate these two representations?
Given that {19, } is a basis, we can represent &, and ¢; as

§o = cuto + cr2hy (152)
and
&1 = catpo + co2tr (153)
Substituting this into (151), we obtain
Y = Boéo + B1&1 = Bo(c1tbo + crotn) + Bi(cartbo + cazthn) (154)
which becomes
Y = (Bocir + Frcar)o + (Bocrz + Prcaz)tn (155)

when we rearrange the terms. If we now compare (150) and (155), it follows that coefficients
g, a1, By and [, are related as

ap = Bocir + Bicar (156)
and
a1 = Bocia + Bica (157)
In matrix form, expressions (156) and (157) can be rewritten as
Qg C11 C2a Bo
_ 158
{041} {012 022}{51} ( )
and
T — [ C11 €21 } (159)
Ci2 C22

can be interpreted as the transformation matriz that relates representations of ¢ in bases
{10, 91} and {&, & }. Note that the elements of matrix 7 can be obtained directly from
expressions (152) and (153) as

C11 = <§07¢0>
Ci2 = <§07¢1> (160)
Co1 = <€17¢0>

Co2 = <€171/)1>

Once we know this matrix, we can easily compute ag and «; given §y and (; (and vice
versa,).

Let us now consider a linear operator A, whose matrix representation in basis {1, ¢ }
is A. What would be the matrix representation of this operator in basis {&,&;}? It is not
difficult to show that this representation has the form

A=T7AT (161)

where T is the matrix defined in (159). Since matrices A and A are obviously similar, it
follows that their eigenvalues are exactly the same (and also match the eigenvalues of operator
A, by virtue of Theorem 2).
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