
ELEN 162
A. I. Zecevic

Lecture Notes for Week 8

Fundamentals of Parallel Computing

In this lecture we will describe some basic characteristics of parallel computers, such as
memory architectures, performance criteria and interprocessor communications. We will
also consider certain important computational problems whose solution can be significantly
accelerated if the process is parallelized. In this context, we will devote special attention to
systems of linear equations, since they play a central role in solving a wide range of problems
(including nonlinear algebraic and differential equations).

Parallel Architectures

High-performance computers that consist of multiple processing units can be configured
in a number of different ways. With that in mind, it is helpful to begin by drawing a
distinction between multicore and multiprocessor architectures. In the multicore case, the
different processing units (known as cores) are located on a single chip, and are designed to
simultaneously execute different instructions of the same program.

A typical configuration of this sort with two levels of cache is shown in Fig. 1. Note that
each core has its own L1 cache, which consists of two parts - one that stores the data, and
another that contains instructions. The L2 cache has a larger capacity, and is shared by all
units.

Main Memory

Shared Memory L2

L1
Instructions

L1
Data

Core 1

Ln
Instructions

Ln
Data

Core n

Figure 1: A multicore architecture with two levels of cache.

1



One of the advantages of such a design is that the cores (and the associated memory units)
are physically close to each other, and can therefore be easily connected. This simplifies data
retrieval as well, since each core can access its local cache (L1) very quickly, and will send a
request to L2 cache only if it cannot find the information that it needs. Such requests can
be handled in several different ways, depending on the total number of cores.

Although multicore chips are used in virtually all newer computers (and the number
of cores that can be placed on a chip is steadily increasing), in the following we will be
more interested in multiprocessor systems, since they are better suited for high-performance
scientific computing. Such systems consist of multiple CPUs that are part of the same
computer, but are not on the same chip. These units are generally more powerful and
versatile, and can simultaneously execute different programs.

The memory organization in such systems can take one of two basic forms, which differ
in the amount of storage space that is directly accessible to each processor.

Shared Memory Architecture

Figure 2 shows an example of a shared memory architecture where each processor has its
own L1 cache, but the main memory is common to all of them.

Main Memory

Processor 1

Cache

Processor 2

Cache

Processor n

Cache

Figure 2: Example of a shared memory architecture.

This type of configuration eliminates the need for direct communication links between
processors, since they can easily exchange information by writing to (and reading from) the
main memory. The difficulty, however, is that such exchanges are susceptible to delays,
since access times to the main memory can vary significantly. To see why this is so, suppose
that one of the processors needs a block of data in order to execute the next step of its
computation. If the data is already in the local L1 cache, it can be retreived easily. If this is
not the case, however, the processor must request it from the main memory, at which point
two possible scenarios can arise.

2



Scenario 1. The latest version of the data could be available in the main memory. Before
it can be fetched, however, the processor must free up the necessary space in its L1
cache. This means that some data (preferably a block that has not been used for a
while) must be sent back to the main memory.

Scenario 2. The latest version of the data could reside in the cache of another processor. In
such cases, the data would first have to be written into the main memory, and erased
from the cache of the processor that modified it. Only then can the steps described in
Scenario 1 be executed.

What makes this process potentially unpredictable is the possibility that multiple processors
could simultaneously try to update the same block of data. In order to avoid conflicts, this
must be done sequentially, so queuing delays are inevitable. In such cases, we must also
ensure that successive modifications of the data do not result in any inconsistencies, which
further prolongs the time during which the system remains idle. Bottlenecks of this sort
can slow down the computation significantly, particularly when the number of processors is
large.

Distributed Memory Architecture

A schematic description of a distributed memory architecture is shown in Fig. 3. In
this configuration, each processor has its own local memory, and exchanges information with
other units through a communication network.

Interconnection Network

Processor 1 Processor 2 Processor n

Local Memory Local Memory Local Memory

Figure 3: Example of a distributed memory architecture.

It is not difficult to see that this form of organization is considerably more flexible than
the one shown in Fig. 2, since the processors do not compete for memory access. Such an
arrangement is more costly to implement, however, and requires specialized protocols for
interprocessor communication (which we will discuss shortly).

3



Performance Criteria

In order to evaluate the efficiency of a parallel algorithm, we need to determine the number
of tasks that it can perform simultaneously, and account for possible delays that can arise
in this process. Two performance measures that are particularly useful for this purpose are
scalability and speedup.

Scalability

Parallel computers that consist of a large number of processors are said to be massively
parallel. Whether or not such a configuration will be effective depends to a large extent on
the nature of the problem, and how well a particular algorithm can exploit its structural
features. Given a problem whose size is fixed, we will say that the parallel algorithm designed
to solve it is scalable if its efficiency increases with the number of processors. Such algorithms
are usually well suited for massively parallel computers, since they can utilize a large number
of processors (ideally, they could perform the required computations p times faster using p
processors).

Speedup

Another measure for the effectiveness of a parallel algorithm is the speedup that it
achieves. This quantity can be defined as

Sp =
Ts
Tp

(1)

where Ts denotes the time needed to execute the algorithm using a single processor, and
Tp represents the time needed to do this in parallel using p processors. In practice, Sp is
always smaller than p, because parallel computation necessarily entails a certain amount of
overhead. As a result, only a portion of Tp is actually devoted to “mathematically useful”
activities.

To see how the overhead can be reduced, we will need to briefly consider some of its
principal sources. One of them has to do with load balancing, which measures how evenly the
computational effort is distributed across the processors. When load balancing is inadequate,
some processors will inevitably take longer to complete their tasks, and delays are likely to
occur. This effect is particularly pronounced if the tasks are synchronized, in which case a
number of processors could remain idle for prolonged periods of time.

A typical example of a this sort are iterative algorithms in which the next iteration
cannot begin before all processors have completed the previous one (and have exchanged
the relevant data). We will examine a number of such methods later, but for now it suffices
to observe that sychronization adds to the overhead, since it requires special routines that
coordinate the activities of different processors. The time needed to execute them can be
treated as a form of delay, since no new computations are performed until all the necessary
steps have been completed.

Interprocessor Communication

In distributed memory architectures, the speedup is also affected by the time needed for
interprocessor communications. It is obviously desirable to minimize this type of overhead

4



as much as possible, since that can significantly reduce the overall execution time. To explain
how this can be done, we must first say a few words about the structure of the messages
that are being exchanged, and the way that different processor configurations handle certain
basic communication tasks.

How Messages are Structured

We begin by observing that each message consists of one or more packets, which can be
viewed as groups of bits. Most of these bits represent data that is part of the computation,
but a fraction of them is always dedicated to other tasks (such as control, addressing, error
checking, etc.). Throughout this discussion we will treat packets as the basic “units” of
communication, and will assume that each one of them requires time T0 to be transmitted
across a single communication link. The value of T0 includes the time needed to assemble
a packet and add the necessary control and address bits, possible queing delays, as well as
propagation time.

It is important to keep in mind in this context that individual messages are often parti-
tioned into multiple packets. As a result, it will generally take longer than T0 for a processor
to receive the entire message from one of its “neighbors”. To get a sense for why partitioning
is potentially advantageous, consider a scenario where processor i needs to send a message
which consists of n different packets to processor j. If we assume that the shortest path
between these two processors involves k links, the message would reach its destination at
time tS = knT0 if it were transmitted as a whole (since the transmission time is proportional
to the number of packets that it contains).

The situation is quite different, however, if we choose to transmit one packet at a time.
If the first packet is sent at time t1 = 0, the second at time t2 = T0 and so on, the last packet
will obviously leave processor i at time tn = (n− 1)T0. This packet will reach processor j at
time

tM = tn + kT0 = (n+ k − 1)T0 (2)

which implies that tM < tS. The difference between tM and tS can be very significant if
n and/or k happen to be large, so breaking up messages into their constituent parts (and
sending them in stages) is clearly a useful strategy.

Types of Message-Passing Architectures

When dealing with message-passing architectures, it is important to estimate how long it
takes to execute certain basic communication tasks, and how one can optimize this process.
It is also important to determine how this delay depends on the number of processors (which
we will denote by p).

Processors can be connected in a number of different ways, some of which are illustrated
in Figs. 4-8. For the sake of expediency, in the following we will focus exclusively on the
so-called hypercube topology, since it provides the most flexibile framework for information
exchange. In a hypercube, each processor is assumed to have d “neighbors” which are
connected to it directly. Figure 7 corresponds to the case when d = 3, and Fig. 8 shows
what such an arrangement looks like for d = 4. It is not difficult to recognize from these two
diagrams that a “d-cube” consists of exactly 2d processors.

5



Figure 4: Example of a ring topology.

Figure 5: Example of a mesh topology.

Root

Level 0

Level 1

Level 2

Level 3

Figure 6: Example of a tree topology.

6



Figure 7: A hypercube with d = 3.

Figure 8: A hypercube with d = 4.

Basic Communication Tasks

The simplest communication task in parallel computing is a single node broadcast, where
an individual processor sends the same packet to all others. Sending a different packet to
each processor gives rise to a more general problem, which is commonly referred to as a
single node scatter.

When all processors simultaneously perform a single node broadcast, we have what is
known as multinode broadcast. This task obviously poses some additional challenges, since
there is a distinct possibility that different packets will compete for the same communication
links. In order to resolve this problem, it is necessary to develop scheduling protocols that
can minimize queuing delays.

An even more complicated scenario corresponds to the case when each processor simul-
taneously performs a single node scatter. This task (which is referred to as a total exchange)
can give rise to significant communication delays if it is not executed carefully.

7



Remark 1. The first three types of exchanges that we described can be performed “in
reverse”, if we assume that processors receive data instead of sending it. These tasks (which
are known as single node accumulation, single node gather and multinode accumulation,
respectively) will not be considered in the following, since they are dual to the ones that we
will analyze.

When examining how communication tasks can be optimized, it is helpful to represent
processors as nodes in a graph. If we have 2d processors at our disposal, it will be convenient
to number the nodes in binary form and link them in such a way that neighboring nodes
differ from each other by a single bit. By doing so, we can ensure that every node has exactly
d neighbors (which is the defining characteristic of a hypercube topology). Fig. 9 shows how
this works for d = 3.

000
001

101
100

010

110

011

111

Figure 9: Node numbering for a hypercube with d = 3.

We now proceed to describe how a single node broadcast can be implemented on a
hypercube. To begin with, we should observe that any node in the hypercube can serve as
the root of a spanning tree. A spanning tree is defined as a subgraph which connects all the
nodes using the smallest possible number of edges. It can be shown that this number will
always equal n− 1 in a connected graph with n nodes.

To demonstrate how spanning trees can be formed, let us assume that the binary index
of the root node is (0, 0, . . . , 0). Our first step will be to define the nodes shown in Fig. 10
as its “children” since their indices differ from (0, 0, . . . , 0) by a single bit.

(00 ... 0)

(00 ... 01)

(00 ... 10)

(10 ... 00)

Figure 10: Node (0, 0, . . . , 0) and its “children”.

8



Each node in Fig. 10 will have “children” of its own, which are obtained by flipping a
single 0 into a 1 following the last 1 in its binary index. This process is illustrated in Fig. 11,
which shows the “children” of nodes (0, 0, . . . , 0, 1, 0), (0, 0, . . . , 0, 1, 0, 0) and (1, 0, . . . , 0, 0).
It should be noted that node (0, 0, . . . , 0, 1, 0) has only one of them, (0, 0, . . . 0, 1, 0, 0) has
two and (1, 0, . . . , 0) has as many as d− 1.

(00 ... 100)

(00 ... 101)

(00 ... 110)

(10 ... 00)

(10 ... 01)

(10 ... 10)

(11 ... 00)

(00 ... 10) (00 ... 11)

Figure 11: The next step in forming a spanning tree.

By proceeding in this manner, we can systematically form a spanning tree that is rooted
in node (0, 0, . . . , 0). The diagram in Fig. 12 illustrates what such a tree looks like for d = 3.
The advantage of numbering the nodes in this manner is that it precisely specifies where a
packet should be sent from any given node. If it happens to be at node 100, for example,
we know that it should be forwarded to nodes 101 and 110 (which are its “children”) in the
next step. This means that we can formulate an appropriate scheduling algorithm by simply
following the graph shown in Fig. 12.

9



000

001

010

100 101

110 111

011

Figure 12: The spanning tree for d = 3.

Given that the indices of any two nodes in a “d-cube” differ by no more than d bits,
we know that a packet sent by the root node can get to any other node in at most d
steps. Recalling that d = log2 p in a hypercube, we can conclude that the maximal time for
executing a single node broadcast on this type of message passing architecture is

T (p) = T0 log2 p (3)

In this expression, T0 once again denotes the time needed to transmit a packet across a single
communication link.

We will not analyze the other three communication tasks in detail, but it is helpful to
know how their execution time depends on the number of processors. The following table
provides this information for a hypercube configuration.

Communication Task Execution Time

Single node broacast T (p) ∼ log2 p

Single node scatter T (p) ∼ p/ log2 p

Multinode broadcast T (p) ∼ p/ log2 p

Total exchange T (p) ∼ p

Table 1. Execution time for different communication tasks.

Examples of Parallelizable Computations

Vector and Matrix Operations

To get a sense for the potential benefits of parallel computing, it is helpful to consider how it
can accelerate some basic operations involving vectors and matrices. The simplest example
of this sort is the scalar product of vectors x and y

xTy =
n∑

i=1

xiyi (4)

10



which requires n multiplications and n additions. If we were to perform this task serially for
two n× 1 vectors, the execution time would be

TS = 2n∆t (5)

(where ∆t denotes the time needed for a single addition or multiplication).
The diagram in Fig. 13 illustrates how this operation can be parallelized for two 4 × 1

vectors using 4 processors. It is readily observed that this requires an initial step where pairs
(xi, yi) are multiplied, and 2 subsequent steps to form the overall sum.

1 2 3 4

1

1 3

Figure 13: Computing the scalar product using 4 processors.

Given that these operations are performed simultaneously in each step, the total compu-
tation time is

Tcomp = 3∆t (6)

If we assume that the time needed to transmit a number from one processor to another is T0,
the total communication overhead will be Tcomm = 2T0, and the time required for computing
xTy in parallel becomes

TP = 3∆t+ 2T0 (7)

This is obviously significantly shorter than the time needed to perform such a computation
in series (which is TS = 8∆t in this case).

Figure 14 extends this approach to the case when x and y have dimension 8 × 1, and 8
processors are available. From this diagram, it is obvious that we now need 3 different steps
beyond the initial multiplication, which means that

TP = 4∆t+ 3T0 (8)

11



1 2 3 4 5 6 7 8

1

1

1 3 5

5

7

Figure 14: Computing the scalar product using 8 processors.

Figures 13 and 14 suggest that the number of steps needed to compute the scalar product
of two n× 1 vectors is log2 n+ 1 if n processors are available. If we include communication
overhead as well, the total execution time becomes

TP = [log2 n+ 1]∆t+ T0 log2 n (9)

This expression allows us to estimate the speedup as

TS
TP

=
2n∆t

[log2 n+ 1]∆t+ T0 log2 n
(10)

when n processors are used. If we additionally assume that T0 = α∆t (where α < 1), we
obtain

TS
TP

=
2n

[(1 + α) log2 n+ 1]
(11)

which indicates that the speedup is roughly proportional to n/ log2 n.
The ideas outlined above can be easily extended to matrix multiplication. Given two

matrices A and B of dimension n × n, we know that term (i, j) in matrix C = AB can be
computed as

cij =
n∑

k=1

aikbkj (12)

Since calculating cij involves the scalar product of two n× 1 vectors, we know that we can
perform this operation using n processors in time

TP = [(1 + α) log2 n+ 1]∆t (13)

12



Observing that there are n2 such elements, it follows that we would need n3 processors
to compute them all simultaneously. A serial algorithm, on the other hand, would require
time

TS = 2n3∆t (14)

so the speedup in this case could be as high as

TS
TP

=
2n3

[(1 + α) log2 n+ 1]
(15)

Remark 2. It is not difficult to see that parallelization algorithms of this sort are highly
scalable. In the case of matrix multiplication, for example, they allow us to use as many n3

processors, which can be a very large number. We should also note that such algorithms can
be easily adapted if the number of available processors happens to be smaller.

Linear Algebraic Equations

When discussing the potential advantages and disadvantages of parallel computing, it is
important to keep in mind that many important problems do not lend themselves to simple
parallelization schemes. We will examine a number of such problems in subsequent lectures,
but before we do that, we should point out that most of them ultimately reduce to solving
systems of the form

Ax = b (16)

where A is an n × n matrix, and b is an n × 1 vector. For this reason, we will focus our
attention on parallel algorithms for solving systems of linear algebraic equations.

This problem can be approached in many different ways, but all existing methods fall
into one of two general categories - they are either direct or iterative. At this point, we will
briefly outline the main differences between them, on the understanding that a more detailed
treatment will be provided later.

Direct Methods

Two of the most commonly used techniques for solving linear equations directly are
Gaussian elimination and LU factorization. Since we already discussed Gaussian elimination,
we will now briefly explain how LU factorization works.

The main objective of this method is to represent matrix A as

A = LU (17)

where

L =


l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

 (18)

is lower triangular and

U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

 (19)

13



is upper triangular. Once such a factorization is obtained, the solution process proceeds in
two stages, using the fact that

LUx = b (20)

Setting
Ux = z (21)

we first solve system
Lz = b (22)

for z. This vector is then used to compute x as

Ux = z (23)

The process of solving equation (22) is known as forward substitution (since it starts from the
first equation), while (23) corresponds to backward substitution (as in Gaussian elimination)

When analyzing the properties of LU factorization, it is important to point out that
matrices L and U are not unique. In order to avoid this problem, it is customary to set all
the diagonal elements of matrix L (or U) to 1. The following example illustrates how this
process works.

Example 1. Let us consider system (16) in which A and b are chosen as

A =

 1 0 3
2 2 1
1 1 1

 (24)

and

b =

 1
0
1

 (25)

Our objective in the following will be to represent matrix A as

A = LU (26)

where

L =

 l11 0 0
l21 l22 0
l31 l32 l33

 (27)

and

U =

 u11 u12 u13
0 u22 u23
0 0 u33

 (28)

In order to ensure uniqueness, we will assume that l11 = l22 = l33 = 1.
We now proceed to compute the elements of L and U in a step-by-step manner, starting

with the first row of U and the first column of L.

STEP 1. To compute the first row of U , we will make use of the fact that

1 = a11 = l11u11 =⇒ u11 = 1

0 = a12 = l11u12 =⇒ u12 = 0

3 = a13 = l11u13 =⇒ u13 = 3

(29)

14



We can now utilize the value that we obtained for u11 to determine the first column of L as

2 = a21 = l21u11 = l21 =⇒ l21 = 2

1 = a31 = l31u11 = l31 =⇒ l31 = 1
(30)

The situation after this step can be schematically represented as

L =

 1 0 0
2 ∗ 0
1 ∗ ∗

 U =

 1 0 3
0 ∗ ∗
0 0 ∗

 (31)

where ∗ denotes elements that have yet to be computed.

STEP 2. To determine the second row of U , we need l21, u12 and u13 (all of which have
already been calculated). Given this information, we obtain

2 = a22 = l21u12 + l22u22 =⇒ 2 = l22u22 =⇒ u22 = 2

1 = a23 = l21u13 + l22u23 =⇒ −5 = l22u23 =⇒ u23 = −5
(32)

The second column of L can then be computed as

1 = a32 = l31u12 + l32u22 =⇒ 1 = 2l32 =⇒ l32 = 0.5 (33)

using the previously calculated values of l31, u12 and u22. Once this is done, matrices L and
U become

L =

 1 0 0
2 1 0
1 0.5 ∗

 U =

 1 0 3
0 2 −5
0 0 ∗

 (34)

STEP 3. In the final step we only need to determine u33, since we know that l33 = 1. This

can be done by observing that

1 = a33 = l31u13 + l32u23 + l33u33 =⇒ 0.5 = l33u33 =⇒ u33 = 0.5 (35)

At this point, the factorization is complete, and matrices L and U become

L =

 1 0 0
2 1 0
1 0.5 1

 U =

 1 0 3
0 2 −5
0 0 0.5

 (36)

We will now use the special structure of these matrices to compute vector x. As noted
earlier, this procedure involves two steps, the first of which is to solve system 1 0 0

2 1 0
1 0.5 1

 z1
z2
z3

 =

 1
0
1

 (37)

Using forward substitution, we easily obtain

z1 = 1

2z1 + z2 = 0 =⇒ z2 = −2

z1 + 0.5z2 + z3 = 1 =⇒ z3 = 1

(38)

15



Once vector z is computed, we use it to form the system 1 0 3
0 2 −5
0 0 0.5

 x1
x2
x3

 =

 1
−2

1

 (39)

which can be solved using backward substution. When we do so, we obtain

0.5x3 = 1 =⇒ x3 = 2

2x2 − 5x3 = −2 =⇒ x2 = 4

x1 + 3x3 = 1 =⇒ x1 = −5

(40)

When evaluating the efficiency of LU factorization, one should keep in mind that the
number of floating point operations needed to execute it is proportional to n3 (assuming
that A is an n × n matrix, of course). This suggests that the computational effort can be
prohibitive when n is large, regardless of how powerful our processors may be. Because of
that, direct methods of this sort are typically applied only to sparse matrices, in which most
of the elements are zero. We will discuss the properties of these matrices in greater detail in
subsequent lectures.

Iterative Methods

Iterative methods solve system
Ax = b (41)

recursively, and the vector x that they produce is only an approximation of the exact solution.
To describe how these methods work, let us rewrite equation (41) as

Q−1Ax = Q−1b (42)

where Q is an unspecified nonsingular matrix. If we now define matrix G and vector ξ as

G = I −Q−1A (43)

and
ξ = Q−1b (44)

(42) can be rewritten as
(I −G)x = ξ (45)

which is equivalent to
x = Gx+ ξ (46)

From this, we can conclude that x∗ will be a solution of equation (41) if an only if it satisfies

x∗ = Gx∗ + ξ (47)

It can be shown that equations of this form can be solved iteratively as

x(k + 1) = Gx(k) + ξ (48)

16



whenever the spectral radius of matrix G satisfies ρ(G) < 1. If this condition is met, the
process will converge the solution of (41) starting from any initial approximation x(0).

The question that we now need to consider is whether this approach can be extended to
cases where ρ(G) ≥ 1. It turns out that this is possible if matrix Q is chosen in a particular
way. The following definition and the ensuing lemma offer some insight into how this can be
done.

Definition 1. The iterative sequence (48) is said to be symmetrizable if there exists a
nonsingular matrix W such that W (I −G)W−1 is symmetric and positive definite.

Lemma 1. If sequence (48) is symmetrizable, there exists a positive constant γ such
that matrix

Gγ = γG+ (1− γ)I (49)

satisfies ρ(Gγ) < 1.

Remark 3. There is actually an entire range of values for γ which satisfy condition
ρ(Gγ) < 1. It can be shown, however, that

γ̄ =
2

2− λm(G)− λM(G)
(50)

is the optimal choice, since it produces the smallest possible value for ρ(Gγ).

To see how we can make use of Lemma 1, suppose that x∗ is the solution of system (46)
(and therefore of (41) as well). If we multiply equation (47) by γ, we obtain

γx∗ = γGx∗ + γξ (51)

which becomes
x∗ = γGx∗ + (1− γ)x∗ + γξ (52)

after adding (1− γ)x∗ to both sides. This implies that equation (46) and equation

x = γGx+ (1− γ)x+ γξ (53)

have the same solution, and are therefore equivalent.
It is not difficult to see that system (52) corresponds to the iterative sequence

x(k + 1) = Gγx(k) + ω (54)

where
Gγ = γG+ (1− γ)I (55)

and
ω = γξ (56)

Since ρ(Gγ) < 1 by virtue of Lemma 1, this sequence is guaranteed to converge to x∗.
How realistic is it to expect that an iterative sequence of the form (48) will be symmetriz-

able? The following lemma provides a straightforward answer to this question.

Lemma 8.2. Suppose that matrices A and Q are symmetric and positive definite. Then,
there exists a nonsingular matrix W such that W (I − G)W−1 is symmetric and positive
definite as well.

17



It is important to recognize that this result can be applied even in cases when matrix A
is not symmetric, because system

Ax = b (57)

can always be rewritten as
Ãx = b̃ (58)

where
Ã = ATA (59)

and
b̃ = AT b (60)

Given that is Ã is symmetric and positive definite by construction (and recalling that matrix
Q can be chosen freely), it follows that the conditions specified in Lemma 8.2 can be easily
satisfied.

Nonlinear Algebraic Equations

Consider the system of equations
F (x) = 0 (61)

where

F (x) =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)

 (62)

and functions fi(x1, x2, . . . , xn) (i = 1, 2, . . . , n) are assumed to be nonlinear and differen-
tiable everywhere on Rn. Since our main objective is to consider the computational aspects
of this problem, in the following we will assume that there exists a vector x∗ such that

F (x∗) = 0 (63)

It is important to keep in mind, however, that this is not a given in general, and that it
is usually difficult to tell whether equations of this sort have a unique solution, multiple
solutions or no solution at all. This is one of the reasons why such problems are potentially
challenging.

The most effective way to solve system (61) is Newton’s method, which starts from some
initial approximation x(0) and produces a sequence of iterates

x(k + 1) = x(k)− [J(x(k))]−1F (x(k)) (64)

where

J(x(k)) =

 ∂f1/∂x1 · · · ∂f1/∂xn
...

. . .
...

∂fn/∂x1 · · · ∂fn/∂xn

 (65)

represents the Jacobian evaluated at x(k).

18



It is not difficult to see that this approach amounts to solving a system of linear equations
in each step. In order to demonstrate that, let us rewrite (64) as

J(x(k))[x(k + 1)− x(k)] = −F (x(k)) (66)

and set
A = J(x(k)) (67)

y = x(k + 1)− x(k) (68)

and
b = −F (x(k)) (69)

Since J(x(k)) and F (x(k)) are known after the k-th iteration, we can determine the next
iterate by solving system

Ay = b (70)

and computing x(k + 1) as
x(k + 1) = x(k) + y (71)

Remark 4. Since this is something that needs to be done in every iteration, the compu-
tational effort required for solving system (61) will depend on how quickly sequence (64)
converges. If the number of iterations needed to achieve this happens to be N , we will need
to solve N different systems of linear equations (because matrix J(x(k)) and vector F (x(k))
change in each step).

Nonlinear Differential Equations

Systems of linear algebraic equations play a key role in solving nonlinear differential equations
as well. Such equations have the general form

ẋ = F (x) (72)

where x(t) = [x1(t) x2(t) . . . x2(t)]
T and

F (x) =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)

 (73)

As in the case of Newton’s method, functions fi(x1, x2, . . . , xn) are assumed to be nonlinear
and differentiable everywhere on Rn.

In order to solve such a system numerically, it is first necessary to select a time step h
and a set of points t0, t1 = t0 + h, . . . , ti = ti−1 + h, . . . , tr for which we will compute the
solution x(t). Once these points have been determined, we can make use of the fact that
x(t) must satisfy

ẋ(ti) = F (x(ti)) (74)

for i = 0, 1, . . . , r.

19



A standard approach for computing x(t) at times {t0, t1, . . . , tr} is to approximate ẋ(ti)
using x(ti), k previously computed values x(ti−1), . . . , x(ti−k), and s previously computed
derivatives ẋ(ti−1), ẋ(ti−2), . . . , ẋ(ti−s). To keep the notation as simple as possible, these
vectors are usually denoted as {xi, xi−1, . . . , xi−k} and {ẋi−1, ẋi−2, . . . , ẋi−s}, respectively.
This allows us to rewrite (74) as

ẋi = F (xi) (75)

The two most commonly used approximations for ẋi are the backward Euler formula and
the trapezoidal formula. The backward Euler is the simpler of the two, and approximates ẋi
as

ẋi ≈
1

h
(xi − xi−1) (76)

The trapezoidal formula involves derivative ẋi−1 as well, and allows us to express ẋi as

ẋi ≈
2

h
(xi − xi−1)− ẋi−1 (77)

To see how these approximations help us solve system (75), suppose that we are given an
initial condition x0 and that we have already computed x1, x2, . . . , xi−1 using the backward
Euler method. In order to find xi, we need to approximate ẋi as

ẋi ≈
1

h
(xi − xi−1) (78)

in which case equation (75) becomes

1

h
(xi − xi−1) = F (xi) (79)

Since xi−1 is known at this point, (79) becomes a system of nonlinear algebraic equations
in xi, whose general form is

Φ(xi) = F (xi)−
1

h
xi +

1

h
xi−1 = 0 (80)

This is obviously something that we can solve using Newton’s method, so we once again
have a situation where the main computational task is to solve a system of linear equations
of the form

Ax = b (81)

Note, however, that in the case of differential equations we will have to do this for every
point ti, so accellerating the process using parallel techniques becomes even more critical.

The trapezoidal formula has similar computational requirements, since it approximates
system (75) as

2

h
(xi − xi−1)− ẋi−1 = F (xi) (82)

If we rewrite this expression as

Φ(xi) = F (xi)−
2

h
xi +

[
2

h
xi−1 + ẋi−1

]
= 0 (83)

20



we obtain a system of nonlinear algebraic equations in xi, which can be solved using Newton’s
method.

Remark 5. Note that the term

b =

[
2

h
xi−1 + ẋi−1

]
(84)

is treated as a constant in equation (83), because xi−1 and ẋi−1 were already computed in
the previous step (and are therefore known at this point).

21


