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Lecture Notes for Week 3

Quantum Mechanics

In order to explain how quantum computers work, we will first need to provide a brief
overview of quantum mechanics and the mathematical formalism that it uses. Our discussion
of these topics will not be comprehensive, of course, but it will provide us with the necessary
conceptual framework that is needed to describe quantum algorithms and the circuits that
can implement them.

Schrodinger’s Equation

One of the fundamental assumptions of quantum mechanics is that the state of a particle
can be described by a complex-valued wave function (which is usually denoted by the Greek
letter ¢). The temporal evolution of this function is governed by Schrodinger’s equation

maa—i’ = Hy (1)

where H represents a linear operator (the so-called Hamiltonian), and % is Planck’s constant
divided by 2.

Remark 1. Note that the Hamiltonian has nothing to do with the Hadamard operator
(although they are both denoted by H). This can be a source of confusion, so we will need
to exercise some care when we use this symbol.

_ When interpreting what equation (1) means, it is important to keep in mind that operator
H is associated with the total energy of the system. This quantity is usually expressed as

where Ej, represents the kinetic energy, and E), corresponds to the potential energy. In the
special case when we are dealing with a single particle, this expression takes the form

B = Sm(f + 0+ 02) + V(2,21 Q
where m is the particle mass, and V' (x,y, z,t) represents the potential energy that is due to
an external field (which could be time-varying in general).

To keep our discussion as simple as possible, in the following we will assume that the
particle moves only along the x-axis, in which case Schrodinger’s equation has solutions of
the form v (z,t). In cases when the external field is not time varying, these solutions can be
expressed as

() = f(t)p(z) (4)



where f(t) is a function of time, and ¢(z) depends on spatial coordinates. To see why this
separation of variables is helpful, let us substitute (4) into equation (1). When we do so, we
obtain

of(t ~
@) = f(1)pta) )
which can be rewritten as .
it 20 L g (6)

[ty ot p(x)
after dividing both sides by f(t)p(z).

Expression (6) is convenient to work with, since its left hand side depends exclusively
on t, while the right hand side depends only on x. In general, equations of this sort have a
solution only if f(¢) and p(x) satisfy

1 Of(t)

i o = (7)

and

WHSO(SL') =FE (8)

where E is a constant. Under such circumstances, (7) can be rewritten as an ordinary
differential equation

df i

Y~ Ef) ©
whose solution is

f(t) =B (10)

This allows us to represent ¥ (z,t) as

U(x,t) = p(x)e B (11)

where the time varying portion of the wave function has a simple exponential form (in
quantum mechanics, such states are known as stationary states).

When the system is in such a state, we need to focus our attention primarily on equation
(8) and its solution ¢(z). Because of that, the function ¢ (z,t) is often expressed as ¥ (x),
with the implict understanding that the final result must be multiplied by e *#4/".

Quantum Operators and their Interpretation

The mathematical formalism of quantum mechanics is based on a fundamental postulate
which allows us to relate operators and their eigenvalues to physical quantities. This postu-
late can be stated as follows.

Postulate 1. Every observable physical quantity ¢ has an associated operator Q, whose
eigenvalues {g;} represent the only possible values of ¢ that we can register.

One of the immediate implications of this postulate is that a measurement will produce
q = ¢; if and only if ¢(x) = ¢;(x), where ¢;(x) is the eigenfunction of () that corresponds to
¢;- This means (among other things) that we can find a particle only in states {¢1, ¢o,...}
when an observation is made.



Schrodinger’s equation provides us with a nice illustration of how this principle works in
practice. Since this equation reduces to

Hop(x) = Ep(z) (12)

when the field is not time-varying, we can conclude that F represents an eigenvalue of
operator H , and that ¢(x) is the corresponding eigenfunction. Given the interpretation of
this operator, it follows that the set of values { E;} for which (12) is satisfied determines the
possible values that the total energy can take.

To get a sense for how quantum mechanics handles states that do not correspond to
eigenfunctions, we first need to point out that Postulate 1 implicitly assumes that every
quantum operator () satisfies the following two properties.

Property 1. Operator @ must be self-adjoint, which means that all of its eigenvalues are
real (see Theorem 1). This is important because it allows us to identify observable physical
quantities with eigenvalues.

Property 2. The eigenfunctions {¢;(x), ¢2(x), ... } of operator Q form an orthonormal
basis in the space of square integrable functions. As a result, any function f(z) in this space
can be expressed as

flz) = Z@Q(I) (13)

where 3; (i =1,2,...) are constant coefficients (which can be complex in general).

When 1) (x) is not an eigenfunction of Q, Property 2 allows us to express it as
U(x) = cidi(x) (14)

In such cases, we say that the particle is in a state of superposition (as opposed to a state
where ¢ has a definite value). What this means is that a measurement could produce any
one of the possible values for ¢, but we cannot tell in advance which one. The following
postulate tells us how we can determine the probabilities of different outcomes.

Postulate 2. If a particle is in state v, the probability of observing value ¢; when we
perform a measurement can be calculated as

P(gi) = |ol* (15)
where «; is the cocfficient that corresponds to ¢;(z) in (14).
When invoking this postulate, there are two things that we have to bear in mind.

(a) The physical quantity that we are interested in dictates what expression (14) will look
like, because we have to use the eigenfunctions of the appropriate operator as our basis.

|? as probabilities, coefficients o; must satisfy

Z|04i|2 =1 (16)

This condition is guaranteed to hold if the wave function satisfies (¢(x),¢(z)) = 1
(when this is the case, we say that ¢(x) is normalized). A proof of this property is
provided in the textbook.

(b) In order to treat the terms |oy



Calculating Probabilities

To see how P(g;) can be computed from functions ¢(x) and ¢;(z), we should first observe

that
(V(x), di(x)) = (Z a;¢;(x), di(z)) (17)

Recalling that

(3 e o) = i) o(2) 19
expression (17) can be rewritten as

(W(x), di(x)) = Z&ﬂ@j(l“)» ¢i(r)) (19)

Since functions {¢;(z)} constitute an orthonormal basis, (19) becomes

(W(x), di(x)) = i (i), dix)) = o (20)
which allows us to compute P(g;) as
P(gi) = |oa|* = [oi ] = [(¥ (), ¢i(x)) (21)

This relationship is very useful, because it provides us with a simple way to determine the
probabilities of all possible outcomes if function ¢ (x) (i.e., the state of the particle) is known.

Quantum Measurements

Quantum measurements are always performed with respect to a given basis, which is associ-
ated with the physical quantity that we are interested in. If we have a particle in state v,
for example, and choose {1, 1} as our measurement basis, then we will invariably find it
in one of these two states after the observation is made. The probabilities of the possible
outcomes can be obtained by expressing 1 as

Y = apthy + oty (22)

and computing |ap|? and | ]?.

If we were to choose a different measurement basis (say, {¢o, ¢1}), the situation would
change, and we would be able to record only states ¢y and ¢;. To determine the correspond-
ing probabilities, we would have to express ¢ as

Y = Bopo + B (23)

and compute |Sp]? and |3;]?.

In quantum computing, the measurement basis typically consists of states such as “spin
up” and “spin down” or high and low energy levels, which have an obvious physical inter-
pretation. For this reason, the correspondng functions {ty, 1} are commonly referred to
as the “standard” basis. Quantum mechanics asserts, however, that any orthonormal basis
can be used for this purpose, so we need to examine what would change if we were to pick
a basis that is different from the “standard” one.



To see this, suppose that basis {1, ¢1 } corresponds to states of definite spin, but that we
would like to make a measurement in basis {¢g, ¢1} whose constituents @y and ¢; needn’t
necessarily have an obvious physical meaning. A convenient way to distinguish between
these two scenarios is to assume that the state of the system prior to the measurement
is described by wave function 1, whose representations in bases {t, 1} and {¢o, 1} are
given by expressions (22) and (23), respectively. The question then becomes whether one
can perform the measurement in such a way that the possible outcomes are states , and
$1-

To show how this can be done, let us introduce a self-adjoint unitary operator U which
is defined by

Upo = 1o (24)
and

0901 =1 (25)

Note that this is a perfectly legitimate way to define U , since we know how it acts on each
basis function.

When this operator is applied to ¢, we obtain a new function ¢ which can be expressed
as

§= ﬁw = 500900 + 51(7901 = Bobo + Biin (26)

This transformation is useful for our purposes because it allows us to make a measurement
in the “standard” basis {1y, ¢}, and subsequently convert the result to basis {yg, ©1}-

Before we describe how this process works, we should observe that expression (26) allows
for two possible outcomes, ¥y and 1;, whose probabilites are |5g|* and |3;|?, respectively. It
is important to recognize that these probabilities are exactly the same as the ones in equation
(23), which relate to ¢y and ;. This implies that we can switch from one measurement
basis to another without affecting the final result.

With that in mind, let us now consider what happens if the particle is in state &, and we
perform a measurement in the standard basis. If we register state 1)y, we can easily recover
o by applying operator U to function g, since

Uiho = U(Ugpo) = U0y = o (27)

(recall that U = U for unitary self-adjoint operators). If the measurement happens to
produce state 1)1, we can obtain ¢; in a similar manner, using the fact that U U1 = 1.

From this, we can conclude that states ¢y and ¢; can be measured indirectly, using
an appropriately chosen operator that converts the result from one basis to the other. A
schematic representation of this procedure is shown in Fig. 1.

o—p o > measurement in ~
v U standard basis > U ——=° %o o ¥1

Figure 1: A general framework for quantum measurements.



Composite States and Quantum Entanglement

When two or more quantum particles form a larger system, their wave functions combine in
a way that allows us to treat them as a unified whole. To understand what this means, let us
consider a simple two particle system whose constituents were described by wave functions
Y, () and ¢p(x) prior to the interaction. We will assume that v, is expressed as

Vo(7) = Zaiﬁbi(fﬂ) (28)

where functions {¢y, ¢, ...} represent an orthonormal basis in functional space S, and are
associated with measurable values of some physical quantity g. We will do something similar
for ¢y, as well, and assume that it is expressed as

Yp(r) = Zﬁzfz(l") (29)

where functions {;, &, ...} are an orthonormal basis in functional space Sy, and are associ-
ated with measurable values of some physical quantity p.

When these two particles interact, quantum mechanics postulates that the state of the
resulting system can be described by a function that belongs to space S;® S5, whose elements

have the form

U= 0i(p @&) =D 03Ty (30)
%7 27

In this expression, o0;; represent constant coefficients and ¥;; = ¢; ® &; denotes the tensor

product of functions ¢;(z) and &;(z).

This definition implies (among other things) that functions U,;; = ¢; ® §; constitute an
orthonormal basis in S7;® Sy, which is something that we will use extensively. These functons
have a straightforward physical interpretation, because ¥;; = ¢; ®{; corresponds to the case
when the first particle is in state state ¢; and the second one in state §;. When a simultaenous
measurements is performed on both particles, the composite system will necessarily collapse
into one of these states, and the probabilities of the possible outcomes can be computed as
|0z‘j|2-

What do we mean by a “tensor product” of two functions? For our purposes, it will
suffice to define it as a mathematical operation that has the following three properties.

Property 1. If functions v, ¢ and 7 belong to the same space S and « and [ are
complex numbers, the following identities hold true:

(@ + Be) @wn = () @0+ (Be) ®n (31)
Y @ (ap+pn) =19 & (ap) + 1 @ (8n) (32)
a(P @) = () ® p =9 ® (ay) (33)

Property 2. Suppose that functions ¥; and ¢, belong to space S;, and that functions
1y and o belong to space Ss. The scalar product of functions ¢ ® 19 and @1 ® ¢y (both of
which belong to space S = 51 ® S3) is defined as

(11 ® 2, 01 ® a2) = (Y1, 1), * (Y2, P2)s, (34)
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Property 3. The scalar product in space S = S; ® Sy satisfies

(1 @ Yo, a1 @ 02) + Blps ® @4)) = a (Y1 @ g, 1 @ ) +

(35)
+8 (11 ® 2, 3 @ p4)
and
(a1 ® o) + B ®1hs), 01 ® p2) = o (11 ® Yo, 1 ® P2) + (36)
+8* (3 ® 4, o1 @ ©2)
The following example illustrates how Property 1 is used in practice.
Example 1. Suppose that
Yo = aotho + a1t (37)
and
Uy = Botbo + Bt (38)

What will the tensor product of these two functions look like? According to (31) and (32),
function

e @ Yy = (o + a1thr) @ (Botbo + Biyn) (39)
can be expanded as
e @ Py = (oo + 1) @ (Borbo) + (otho + cathr) @ (Bryhr) =
= (%) @ (Boto) + (1th1) ® (Botho) + (aotho) © (Bithr) + (aathr) & (Bryn)

Using (33), this becomes

(40)

Ve ® Py = pfo(o ® o) + B (1o ® 1) + a1 Bo(thr ® o) + a1 1 (Y1 ® 4y) (41)

Our next example shows how the properties of tensor products can be used to calculate
the probabilities of different measurement outcomes.

Ezxample 2. Suppose that S; and S, are identical two dimensional spaces, and that
functions vy and 1); represent the chosen orthonormal basis in both of them. We will
additionally assume that our system consists of two particles whose wave functions belong
to spaces S; and Sy, respectively.

When these two particles interact, expression (30) tells us that the state of the the overall
system can be described by function

U = 009(1o @ o) + g01(ho @ Y1) + 010(¢1 @ o) + 011 (91 @ Pr) (42)

Setting Wog = 1y ® g, Y1 = 1o ® V1, Vip = ¥ ® g and ¥q; = 1 ® 1)y, expression (42)
can be rewritten in a more compact form as

U =agWo + a1Wo1 + a¥io + az¥y (43)

where ag = og9, a1 = 0g1, az = 019 and ag = o1;. This type of representation is standard in
quantum computing, and we will use it in all subsequent discussions.

Since functions Wqy, Vo1, W19 and Wiy constitute an orthonormal basis in space S =
S1 ® Ss, the coefficients ag, a1, as and a3 that appear in expression (43) can be associated
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with the probabilities of different outcomes. To illustrate how these probabilities should be
computed, suppose that we are interested in determining the likelihood that state Wq will
be observed when a measurement is made on both particles. If we form a scalar product
that involves ¥ and basis function Vg, we obtain

(U190, ) = ag (W10, Vo) + a1 (W1o, Tor) + ag (W10, U1o) + as (P10, ¥11) (44)

by virtue of Property 3. Observing that all scalar products in this expression are zero (except
for (W4, U10), which equals 1), (44) reduces to

(U1, U) = ay (45)

This means that the probability of registering state Wiy can be computed as | (¥, ¥) |2.

Remark 2. The ideas that we introduced in this example can be easily extended to
systems of n interacting particles, in which case ¥ has the general form

U =agWo.o+a1Wo.1+...+am 1V 1 (46)

and coefficients a; satisfy
on_1

> laift =1 (a7)

(since they represent probabilities). The fact that function W has 2" components in this
case suggests that the number of measurable states grows exponentially as the system size
increases, which is a very important property from the standpoint of quantum computing.

Quantum Entanglement

An interesting question related to the structure of space S = S; ® S5 is whether all of
its elements can be represented as

U =1, ® Uy (48)

where 1, € S; and ¢, € S5. On first glance, this seems like a reasonable assumption, since
one would expect that the states of the overall system can be expressed in terms of the states
of its constituents (as is the case in classical physics). It turns out, however, that arguments
of this sort do not apply to quantum mechanics.

To see why, let us consider functions 1, and %5 in their most general form, which is

Yo = aotho + a1y (49)
and
Yo = Botho + P11 (50)
As we showed in Example 1, the tensor product
Ve @ Py = (oo + a191) & (Botbo + Bribr) (51)
can then be expressed as
U = apBoWoo + aofiWor + a18o¥10 + a1 111 (52)



In order for (52) to match (43) for a given set of coefficients {ao, a;, as, as}, the following
four conditions must be satisfied:

Oéoﬁo = Qo (53)
aoﬁl = (54)
Oélﬁo = Q9 (55)
Oélﬁl = as (56)
Note, however, that dividing (53) by (54) and (55) by (56) produces
Po  ag
—— 57
b ai (57)
and 5
0 _ Q2
0= o8
P as (58)
This means that equations (53) - (56) have a solution only if
ap . %
P (59)

Since condition (59) does not hold for all possible choices of coefficients {ag, a1, az, az}, there
will obviously be many functions in space S that cannot be represented in the form (46).
Such states are said to be entangled, because they are not reducible to the states of individual
particles.

Operators in Composite Spaces

How are operators in space S = 57 ® Sy related to operators in spaces S; and 557 The
following definition provides a simple answer to this question.

Definition 1. Let A, and 1{12 be linear operators in spaces S; and S, respectively. We
can then define operator A; ® A, in space S = 51 ® S, as

(AreA:) (0 2¢) = (i) © (Azp) (60)

Since operator A ® Ay s linear, applying it to a composite function such as the one in
(30) produces

<A1 X AQ) Z Uzy Al(bz A2£J> (61>

An important implication of this property is that we can simultanously apply different oper-
ators to different particles in the system. This will prove to be very useful, because it allows
us to efficiently manipulate the constituents of a multiparticle system. We could choose,
for example, to perform a measurement on some of them but not on others, or we could
transform the state of each particle in a different way.

Remark 3. If we want to leave particle ¢ undisturbed, operator A; should be chosen as
A; = I, where I is the identity operator.



Measurements on Multiparticle Systems

Suppose that we have a two particle system whose state is described by function
U = CLQ\I/()Q + a1\1101 + CLQ\I/H) + @3\1111 (62)

where all a; are nonzero. As we noted earlier, coefficients |ag|?, |a1|?, |as|* and |as|* can
be interpreted as the probabilities of the four possible outcomes when both particles are
measured simultaneously in basis {1y, 11 }. To illustrate this point a bit more clearly, suppose
that function W collapsed into basis state Wy, after we performed such a measurement. This
is equivalent to saying that the first particle was found in state ¢, and the second one in
state . The likelihood that this particular scenario will materialize is |aa|?, since ay is the
coefficient next to ¥y, in (62).

What would happen if we decided to perform a measurement on just one of the particles
(say, the first one)? In order to see that, we should first observe that any function of the
form (62) can be expressed as

U = 9o ® (aotho + ar1r) + 1 © (a2o + asthr) (63)

If we rewrite (63) as

U = /|ao* + |a1|? - ¢ ®

- . ¢0 4+ —_ .
|ao|? + |a1 |? |ag|? + |ay|?

+ \/ |(12|2 + |Cl3|2 . 77/11 &

ag as
—— Y+ ———=
Vlaz]? + |as|? |ag|? + |as|?

po = +/|ao|* + |ay|?
pr = +/|az|* + |as|?

Qg

Vlao* + Ja|?

431

|ag|? + |ay[?
Qa2

Vlaz|? + |as|?

a3

B Vlazl? + |as|?

U = qu)O + plq)l (67)

and set

(65)

together with
b() -

expression (62) becomes

where
Dy = 1o ® (botbo + bitn) (68)

and
1 = 1h1 @ (batbo + b3t)1) (69)
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It is easily verified that coefficients pg, p1, bo, b1, be and bs satisfy

ol + |pa|* = 1 (70)

|bol* + [ba|* = 1 (71)
and

|b2* + [bs]* = 1 (72)

so we can interpret them as probabilities. It can also be shown that &, or ®; are normalized
and are orthogonal to each other, which means that they constitute an orthonormal basis in
S1® Sy (a proof of this property is provided in the textbook)

Expression (67) tells us that the system will collapse into state @y or ®; when a mea-
surement is performed only on particle 1, and that the probabilities of these two outcomes
are |pg|* and |p;|?, respectively. These two states can be represented in more compact form
as

Dy = byWoo + 01 W01 (73)

and
Dy = bWy + b3y (74)

which is a common practice in quantum computing.

To see what happens when a second measurement is made, let us assume that we found
particle 1 in state 1)y once the initial measurement has been performed. At this point, the
state of the overall system will be

Dy =boWoo + 01 W1 (75)

which implies that the system will be in state Wy or Wq; after a second measurement. The
first scenario corresponds to finding particle 2 in state 1)y, and the second one corresponds
to the case when particle 2 is in state 1);. The probabilities of these outcomes are |by|* and
|b1]?, respectively.
Similarly, if we happen to find particle 1 in state 11, the overall system will collapse into
state
Dy = bW+ bWy (76)

which tells us that a subsequent measurement on particle 2 could produce either )y or
Yy (with probabilities |by|? and |b3]?, respectively). Since the state of particle 2 remains
undetermined in both scenarios, we can conclude that it will be in a state of superposition
until a second observation is made.

Measurements on Bell States

In the scenario that we just considered, successive measurements on the two particles are
obviously independent, because we don’t know what state particle 2 will be in until the
second measurement is performed. The question that we now need to ask is whether this
is always the case. One would intuitively expect that it is, but it turns out that there are
situations when the second measurement is actually influenced by the first one.
A typical example of this sort are so-called Bell states, which have the form
1

Doy = E (Woo + U1y) (77)
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1

Dy = NG (Uo1 + Uyp) (78)
1

Dy = E (Woo — Uyy) (79)

D1y = — (Woy — W) (s0)

V2

These states play an important role in quantum mechanics, and can be produced by certain
types of quantum circuits (which we will describe shortly).

It is not difficult to show that ®gg, g1, P19 and Pq; represent entangled states. To
demonstrate this, let us consider function ®q9 and examine whether it can be decomposed
as

Qoo = Yo Q@ Py (81)
where
VYo = Qoo + a1ty (82)
and
Vo = Botho + B1th (83)
Since
Yo & Py = aoBoVoo + aof1¥or + a180W10 + 151 ¥11 (84)

matching (77) and (84) would require that

aoﬁl =0 (85)
u150 =0 (86)
apfBo = 1/V2 (87)
B =1/v2 (88)

Note, however, that condition (85) implies either «y = 0 or ; = 0. Consequently, (87) and
(88) cannot be satisfied simultaneously. Proceeding in a similar manner, we can show that
this conclusion applies to states ®g;, P19 and P as well.

If a two particle system is in Bell state

- %%a + %npn (89)
what will happen when we perform a measurement on the first particle? In that case,
function ®gg will collapse into either Wy, or Wqq, since these two states are the only available
possibilities. Note, however, that both outcomes automatically place the second particle in
the same state as the first one, although it was not disturbed in any way. What this tells
us is that measurements on individual particles needn’t always be independent, and can
affect each other directly if the system is in a particular type of state. This unusual (and
counterintuitive) property inspired Einstein to formulate his famous EPR paradox, and refer
to quantum entanglement as “spooky action at a distance”.

(I)OO
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