ELEN 162
A. 1. Zecevic

Lecture Notes for Week 6

Number Theory and Encryption

One of the most important applications of quantum computing has to do with the encryption
and decryption of messages. Most methods that are currently used for this purpose rely on
“keys” which allow the sender and receiver to exchange information in a way that is both
reliable and secure. A key can be thought of as an invertible mapping F', which transforms
messages that are represented in numerical form. If two individuals share this mapping, one
of them can send message x to the other by encoding it as y = F'(x), and the receiver can
then easily decode it as z = F~!(y). Since the key is known only to the sender and the
receiver, this type of encryption is commonly referred to as non-public-key encryption.

Although function F' can be chosen in many different ways, non-public-key encryption is
quite straightforward (at least, in theory). In practice, however, it faces certain difficulties
that can not be easily resolved. One of them stems from the fact that keys need to be
changed periodically, since there is always a chance that they can be deduced by a third
party given a sufficient amount of time.

An even more critical problem is how to manage keys when a large number of people is
involved. To see why this poses a challenge, consider a scenario in which n individuals need
to exchange encrypted messages on a regular basis. If each pair has their own “private” key,
then the number of different keys that are needed grows rapidly as n increases.

We can show this explicitly if we number the individuals as pq,pa, ..., pn, and represent
the key sharing scheme in the form of a matrix

0 kio kis ... kino1 ki
0 0 ky ... kot Fon
0O 0 0 ... k3,._ ks,
O (1)
000 0 ... 0 FKuin
o0 0 0 o0 0

in which the key shared by individuals p; and p; is denoted by k;;. Since we are interested
only in establishing the number of different keys that are needed, it will suffice to record only
one number for each pair (which explains why matrix K is upper triangular). We should
also set all the diagonal elements to zero, since individuals don’t need to exchange keys with
themselves.

Given that an n x n matrix consists of n? elements and that n of these elements are on
the diagonal, it is not difficult to see that in this case

n?—n n(n-1)

5 = 5 (2)

of them are nonzero. Note that this number can be quite large in practical situations - if
n = 100, for example, it becomes necessary to maintain (and regularly update) as many as

1

4,950 separate keys. It is therefore fair to say that this process is often cumbersome, and
that managing it involves significant overhead.

The difficulties associated with non-public-key encryption motivated the development of
a different paradigm, which is considerably more efficient. This paradigm (which is known
as public-key encryption) is based on the idea that the keys for encrypting and decrypting
a message needn’t necessarily be the same. The first such algorithm was the so-called
RSA encryption scheme, which was named after the three mathematicians who developed
it (Ronald Rivest, Adi Shamir and Leonard Adelman). In this scheme, the receiver of the
message produces two different keys - a public one that is shared, and a private one that
is not. The generation of both keys relies on prime factorization, and the fact that this
mathematical operation is virtually impossible to execute when the number is large.

A Brief Overview of Number Theory

In order to understand how public-key encryption works, it will be necessary to review
some fundamental results from number theory (particularly those that pertain to prime
factorization and modular arithmetic). In this section we provide a brief summary of these
results, starting with the following definition.

Definition 1. The term “integer” refers to any whole number, positive or negative
(including zero). A positive integer p is said to be a prime number if it is divisible only by
1 and itself. A composite number n, on the other hand, is an integer that has at least one
divisor other than 1 and n.

The so-called “Fundamental Theorem of Arithmetic” claims that any integer a > 1 can
be uniquely represented as

a=pypyt Pt (3)
where p; < py < ... < p,, are distinct prime numbers greater than 1, and o; > 1
(t = 1,2,...,m). Expression (3) is known as the prime factorization of a, and finding
integers {p1,p2, ..., pm} efficiently is one of the most important problems in number theory.

Until very recently, it was believed that this problem cannot be solved when a is a large num-
ber. It turns out, however, that quantum computers can actually accomplish this task in a
reasonable amount of time. This remarkable development could have major repercussions,
since it makes standard encryption techniques potentially unsafe.

To explain how quantum algorithms handle prime factorization, we first need to briefly
describe how modular arithmetic works, and how it relates to RSA encryption.

Modular Arithmetic

Modular arithmetic is concerned with the remainders that are obtained when we divide
two integers. The following lemma provides the basis for many of the results that will be
described in this section (for the sake of clarity, we will be using the same numbering for
lemmas and theorems as in the textbook).

Lemma 5.4. Let a and N be integers, and assume that N > 0. Then, a has a unique
representation of the form

a=kN+r (4)

where k is an integer (which could be positive, negative or zero), and 0 <r < N.

Lemma 5.4 allows us to precisely define the remainder that is obtained when a is divided
by N. This number, which is usually described as

r =a mod N (5)

can be specified uniquely because the remainder is always assumed to be a non-negative
number that is smaller than N.

To illustrate why this assumption is important, consider how one might interpret a num-
ber like 12 mod 7. In principle, we could express 12 as

12=2.7—-2 (6)
12=1-7T+5 (7)
12=0-7+12 (8)
12=—1-7+19 (9)

and so on, but only one of these representations has a remainder that satisfies 0 < r < 7.
As a result, we can say that 12 mod 7 = 5 without any ambiguity.
In modular arithmetic, it is common to encounter expressions such as

a mod N =bmod N (10)

and
a="b (mod N) (11)

These two expressions are actually equivalent, and both of them tell us that dividing a and
b by N produces the same remainder. The following lemma provides an alternative way to
describe this relationship.

Lemma 5.5. Let a and b be two arbitrary integers. Then, a — b is divisible by N if and
only if dividing a and b by N produces the same remainder.

Remark 1. Note that using (mod N) in parenthesis implies that mod N applies to both
sides of the equality. If we are just referring to the remainder that is obtained when a is
divided by N, we do not use parenthesis (we express this number as a mod N).

Example 1. Let a = 32 and b = —10. Since
32=5-6+2 (12)
and
~10=—-2-6+2 (13)

it follows that that these two numbers have the same remainder when divided by 6. We can
therefore conclude that
32 mod 6 = —10 mod 6 = 2 (14)

Given the convention that we introduced in Remark 1, we can equivalently represent expres-
sion (14) as
32 = —10 (mod 6) (15)

3

It is easily verified that Lemma 5.5 applies in this case - all we need to do is recognize that
a—b=42 (16)

is divisible by 6.

Modular arithmetic is quite straightforward when it comes to addition, subtraction and
multiplication. It is not difficult to see, for example, that

(2+7) mod4 =1 (17)

since
9=2.-44+1 (18)

We could equivalently express this relationship as
2+7=1 (mod 4) (19)

since 9 and 1 have the same remainder when divided by 4.
We can easily extend this logic to subtraction and multiplication. Typical examples
would be identities such as

(1—8) modb5=3 (20)
and
(5-7) mod 3 =2 (21)
which follow from the fact that
—7=-2-5+3 (22)
and
35=11-3+2 (23)
respectively.

Division is considerably more complicated, however, because b/a needn’t be an integer
(in which case the expression (b/a) mod N makes no sense). In order to resolve this problem,
it will be necessary to introduce the notion of a modular multiplicative inverse.

To explain what this term means, suppose that a and N are a pair of integers, and that
there exists an integer w such that

w-a=1 (mod N) (24)

This is equivalent to saying that w - a and 1 have the same remainder when divided by N.
What is this remainder? Given that

1=0-N+1 (25)

when N > 1, it follows that 1 mod N = 1 in all such cases. As a result, we can say that w
satisfies
w-a=kN+1 (26)

where k is an integer whenever N > 1. In the following, we will refer to w as the multiplicative
inverse of @ modulo N, and will denote this number by ajy'.

4

Remark 2. Although the multiplicative inverse is often denoted as a~! in the literature,
it should not be confused with the ordinary inverse, since ay" is an integer by definition. It
also satisfies

ay a=kN+1 (27)

which means that ay' a # 1 whenever k # 0.

How does introducing a]_vl help us define modular division? To see this a bit more clearly,
let us assume that expression
x = (b/a) mod N (28)

is interpreted as
r =ay bmod N (29)

It is not difficult to show that if x is computed in this manner, it will also satisfy
ax = b (mod N) (30)

Because this looks very much like standard division (where x = b/a implies ax = b and vice
versa), it makes sense to think of expressions (28) and (29) as equivalent statements.

Does a&l always exist, and is it unique? We will first show that our definition of a;il does
not specify this number uniquely, and will deal with the existence problem after that.

To see why a]_vl is not unique, let us consider the multiplicative inverse of 2 modulo 5.
Since

3.2=1-5+1 (31)

we can legitimately claim that 2;* = 3. However, —7 and 13 can be identified as 2;* as well,
because
—7-2=-3-5+1 (32)

and
13-2=5-5+1 (33)

It turns out that there are actually infinitely many such numbers, which suggests that a]vl
should be viewed as a class of integers. If we denote the members of this class as {wy,ws, ...},
it is easy to show that any two of them must satisfy

w; = w; (mod N) (34)

The following example shows that the nonuniqueness of the multiplicative inverse does
not cause problems with modular division.

Ezxample 2. Suppose that we want to compute (6/5) mod 7. In order to do that, we
should first observe that 3 is one of the possible values for 55, since

3.5=2.7+1 (35)
Using expression (29), we can now calculate (6/5) mod 7 as
(6/5) mod 7 = (57" -6) mod 7 =18 mod 7 = 4 (36)

since

18=2-7+4 (37)

Note that the result wouldn’t change if we picked a different value for 57'. We could
replace 55! in equation (36) with —4, for example, since

—4-5=-3-7T+1 (38)

in which case we obtain
(6/5) mod 7 = (57" - 6) mod 7 = —24 mod 7 = 4 (39)
This tells us that modular division is uniquely defined, despite the fact that aj\,l can take an

unlimited number of values.

It is important to keep in mind in this context that a multiplicative inverse needn’t exist
for every choice of N, so modular division must be handled with care. In order to explain
why this is so, we first need to introduce the notion of the greatest common divisor, and
discuss some of its properties.

Definition 2. Given two positive integers a and b, their greatest common divisor (de-
noted gcd (a, b)) represents the largest integer that divides both of them. If ged (a,b) = 1,
we say that these two numbers are co-prime.

Remark 3. Note that gcd (a,b) satisfies ged (a,b) > 1, regardless of how a and b are
chosen. This is because 1 is a common divisor for any pair of integers.

The following two theorems provide necessary and sufficient conditions for the existence
of az}l, and will help us develop a method for computing this number.

Theorem 5.4. Let a and N be integers, and suppose that N > 1. Then, ajvl exists if
and only if ged (a, N) = 1.

Theorem 5.3. Suppose that a and b are two arbitrary integers, and let m = ged (a, b).
Then, m represents the smallest positive integer that can be expressed as

m = ax + by (40)

where z and y are integers (not necessarily positive).

Euclid’s Algorithm

Since finding the greatest common divisor of a pair of integers is an important step in
determining the prime factors of a composite number, we need to examine how this can be
done. A simple and efficient procedure for computing the ged is known as Euclid’s algorithm
(which we will use extensively in the next few lectures). To understand how this algorithm
works, we will need the following theorem.

Theorem 5.5. Let a and b be two arbitrary integers, and let r be the remainder when
a is divided by b. If r > 0, then

ged (a,b) = ged (b,) (41)

To see why this result is helpful, let us assume (without any loss of generality) that a > b.
If we divide a by b, we will obtain an expression of the form

a=kib+mr (42)
where 0 < r; < b. If r; > 0, Theorem 5.5 ensures that
ged (a, b) = ged (b, 1) (43)
Since r; > 0, our next step will be to divide b by r;, which produces
b= kory+ 19 (44)
where 0 < ry < 1. If 5 > 0, we have that
ged (b, 1) = ged (11, 72) (45)
and we can divide r; by r3. Once we do so, we can rewrite r; as
r1 = karo + 13 (46)

where 0 < r3 < ro.

How long should this process continue? For our purposes, it makes sense to end it when
the remainder becomes zero. This is bound to happen after a finite number of steps, since
{ry,m9,...} is a strictly decreasing sequence and r; < b by definition.

To see why such a termination criterion is desirable, let us assume that we obtained
rm = 0 after m steps. This implies that:

L. 0<7pmo1 <Tmea <...<r; <bafter stepm —1

2. In step m, we have

"m—2 = kmrmfl + Ty, = kmrmfl (47)
Since remainders {71,739, ...,7,_1} are all positive, we know that
ged (a,b) = ged (b, 1) = ged (r1,m2) = ... = ged (Trm—2, Tm—1) (48)

(by virtue of Theorem 5.5). Equation (47) additionally implies that

ng (rm—27 rm—l) = Tm-1 (49)

since 7,,_o is divisible by r,,_1, and r,,_5 > r,,_1. Combining (48) and (49), we can now
conclude that
ng ((Z, b) = Tm-1 (50)

which means that the smallest nonzero remainder produced by this procedure represents the
greatest common divisor of a and b.

The result that we just obtained represents the theoretical basis for Euclid’s algorithm.
The following example illustrates how this algorithm works in practice.

Example 3. Suppose that we want to find the greatest common divisor of a = 18,445
and b = 2,805. In order to do that, we need to perform the following sequence of operations:

a=kb+r = 18,445=6x2,805+ 1,615 = k; =6 r, = 1,615

(
b=kyr 475 — 2,805=1x1,615+1,190 = ky =1 75 = 1,190 (
r1="ksrg+r3 = 1,615 =1x1,190+425 =— k3 =1 r3 =425 (53
ro =kyrs+ry = 1,190 =2 x 4254340 = ks =2 ry = 340 (
r3=rksrg+r; = 425=1x340+85 = ks=1 r; =85 (
ry =kers +176 =— 340=4x854+0 — ksg=4 r4=0 (56

Since the smallest nonzero remainder is 5 = 85, it follows that the greatest common divisor
of 18,445 and 2,805 is 85.

Computing a Multiplicative Inverse

Euclid’s algorithm also provides us with a systematic way to compute multiplicative
inverses. This approach makes use of the fact that ab_l exists if only if a and b are co-prime,
in which case the algorithm produces ged (a,b) = 1. Under such circumstances, Theorem
5.3 ensures that a and b are related as

1 =ax+by (57)
where = and y are integers. Since expression (57) is equivalent to

za=(—y)b+1 (58)

it follows that x is one of the integers that correspond to ab_l.

Example 4 illustrates how this idea can be combined with Euclid’s algorithm to produce
multiplicative inverses. In order to identify all such numbers, we will make use of the following
lemma.

Lemma 5.7. If w is a multiplicative inverse of @ modulo N, then all other numbers with

this property must have the form
z2=w+mN (59)

where m is an integer.

Example 4. Suppose that we want to compute 1, 964]115. In order to do that, we must first
establish whether such a number actually exists. According to Theorem 5.4, this requires
checking if ged (1,964, 115) = 1.

If we apply Euclid’s algorithm to a = 1,964 and b = 115, we obtain

a=kb+r — 1,964=17-1154+9 — k=17 =9 (60)
b=kori+ry — 115=12-947 = ky=12 ry =7 (61)
ri=kyro+ry = 9=1-742 = ky3=1 r3=2 (62)
ro=kurs e — T=3-241 = k=3 ri=1 (63)

8

rs=ksry+ry = 2=2-140 = ksy=2 r5=0 (64)

Since the smallest nonzero remainder equals 1, we can conclude that ged (1,964,115) = 1,
and that 1,964 75 exists.

To compute 1, 964]115, we now need to apply Euclid’s algorithm “in reverse”. This entails
the following sequence of steps:

1:T4:T2—k4T3:T2—3T3:T2—3(T1—k37"2):

:T2—3T1+3T2:4T2—3T1:4<b—k27’1)—37’1:

— 4(b—12r,) — 3r) = 4b— 51r, = b — 51(a — kyb) = (65)
=4b— 51(a — 17b) = —5la + 871b
Recalling that a = 1,964 and b = 115, (65) can be rewritten as
1= -51x1,964+ 871 x 115 (66)
which is equivalent to
—51 x 1,964 = =871 x 115+ 1 (67)
This implies that —51 is one of the possible values for 1,96471;.
Lemma 5.7 allows us to identify all such numbers, since we know that they satisfy
y=—-51+m-115 (68)

(where m is an integer). We can therefore conclude that the multiplicative inverse of 1,964
modulo 115 corresponds to set

{...—166,—51,64,179,...} (69)

As noted in (34), any two numbers y; and y; that belong to this set satisfy y; = y; (mod
115).

The RSA Encryption Algorithm

The basic idea behind the RSA algorithm is for the receiver (who is traditionally referred
to as Alice in the literature) to choose two large prime numbers, p and ¢, and form their
product n = pq. She then computes

¢(n) =(p—-1)(¢—1) (70)

and picks a number b such that 1 < b < ¢(n), and ged (b, p(n)) = 1.

Both n and b are made available to anyone who wants to send Alice a message, which is
why these two numbers are referred to as Alice’s “public key”. Her “private key” consists of
p and ¢, as well as a number a which satisfies

ab=1 (mod ¢(n)) (71)

This number is not difficult to compute, since it corresponds to the multiplicative inverse of
b modulo ¢(n) (we saw that Euclid’s algorithm can do this very efficiently).

9

Suppose now that Bob wants to send a message to Alice, which is represented by number
x (this number is always chosen so that 1 < < n). Since n and b are publicly available,

Bob can encrypt the message as
y = z® mod n (72)

and send it to her. It is not difficult to show that Alice can then recover x by computing
x =y* mod n (73)

once she receives y (see Theorem 5.9 in the textbook).

What makes this exchange secure is the fact that integer a is a part of Alice’s private key.
No one else has access to this information, since computing a requires knowing ¢(n), and
therefore p and ¢ as well. As we already noted, these two numbers are practically impossible
to deduce from n, since they represent its prime factors. If this were not the case, virtually
anyone who intercepted the encoded message y could determine the original message x.

Although the RSA algorithm appears to be quite straightforward, it poses some nontrivial
computational challenges. Perhaps the most critical one relates to the calculation of integers
2® mod n and y® mod n, since both z* and y* can be very large numbers in general. The
following two lemmas will help us simplify this task.

Lemma 5.10. Let k, m and n be positive integers. Then,

a™ mod n = [a* mod n]™ mod n (74)

Lemma 5.11. Suppose that

W=W -Wy-... Wy (75)
where w; (i = 1,2,...,m) are positive integers. Then,
w mod n = [(w; mod n) - (we mod n) - ... (w, mod n)] mod n (76)

We will now illustrate how these two results can be used for encryption and/or decryption
purposes.

Example 5. Suppose that we want to compute
183" mod 77 (77)

as part of the RSA encryption process. In order to do that, we will first rewrite the exponent
using powers of 2, which produces

1837 = (18)32 . (18)* - (18)* (78)

A good starting point for the computation is 18%, since this number is not too large. Given
that
18* = 104,976 = 1,363 x 77 + 25 (79)

10

it follows that
18* mod 77 = 25 (80)

We now make use of Lemma 5.10 to compute 1832, This procedure will require two steps
- we will first find 18'¢, and then 1832.

STEP 1. By virtue of Lemma 5.10, we know that

18'% mod 77 = [18* mod 77]* mod 77 = 25* mod 77 (81)
Observing that
25% = 390,625 = 5,073 x 77 + 4 (82)
it follows that
18'% mod 77 = 4 (83)

STEP 2. Using expression (83) in conjunction with Lemma 5.10, we have

1832 mod 77 = [18'° mod 77]? mod 77 = 4% mod 77 (84)
Since
16=0-77+16 (85)
it follows that
1832 mod 77 = 16 (86)

Now that we have all the powers of 18 that we need, we can invoke Lemma 5.11, which
allows us to express 18" mod 77 as

183" mod 77 = [(1832 mod 77) - (18* mod 77) - (18" mod 77)] mod 77 =

(87)
(16 - 25 - 18) mod 77 = 7,200 mod 77
Observing that
7,200 =93 x 77+ 39 (88)
we finally obtain
183" mod 77 = 39 (89)

Example 6. Suppose that Alice forms her private key by choosing p = 7 and ¢ = 11,
which produces n = pg = 77 and ¢(n) = (p — 1)(¢ — 1) = 60. She then needs to pick a
number b such that 1 < b < 60 and ged (b,60) = 1. The easiest way to do this would be to
consider the set of prime numbers that are smaller than 60. Since any number z in this set
has only two divisors, 1 and x, we can guarantee that ged (z,60) = 1 if x is not a divisor of
60.

In the following, we will assume that Alice picked b = 37 (for no particular reason). Since
60 is not divisible by 37, she can adopt (n,b) = (77,37) as her public key.

Because a needs to be chosen so that it satisfies

ab=1 (mod ¢(n)) (90)

11

Alice must now compute the multiplicative inverse of b modulo ¢(n). She can do so by
applying Euclid’s algorithm, which produces a = 13 (this is one of the infinitely many values
that correspond to 37g,). With this final piece of information in hand, Alice’s private key
becomes (p, q,a) = (7,11, 13).

Let us now assume that Bob wants to send message x = 18 to Alice. According to the
RSA algorithm, he needs to encrypt this message as

y= ¥ mod n = 18" mod 77 = 39 (91)

(as shown in Example 5). Since 1 < x < n, Alice can decrypt the message using the fact

that
r = y* mod n = 39" mod 77 = 18 (92)

Remark 4. We won’t go through the calculation of x at this point, since it follows the
same procedure as the one described in Example 5. However, a derivation is available in the
textbook (see Example 5.6).

12

