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Lecture Notes for Week 1

Linear Vector Spaces

Set S is referred to as a linear vector space if it satisfies a number of well defined properties,
the most important of which is described below:

Property 1. If z € S and y € S, and a and b are numbers, then ax + by € S.

The following example shows how operations such as addition and multiplication by a
number can be defined in a given set S. It also illustrates how Property 1 can be tested in
practice.

Ezxample 1. Consider the set of all vectors of the form

T
Tr = ) (1)
xs3

where x1, x5 and z3 are real numbers. Since each element in this set is a 3 x 1 vector, it is
commonly denoted as R>.
If we define the operation of addition as

1+
r+y=| x2+ys (2)
T3+ Y3

and multiplication by a number as

ary
axo (3)
axrs

axr

it is easily verified that

ar; by, azry + by
ar+by=| axy | + | bys | = | axy + by (4)
ars bys axs + bys

is a 3 x 1 vector for any choice of a and b. As a result, we can conclude that Property 1 is
satisfied in this case. Since all the other properties hold as well, set R? can be classified as
a linear vector space.



Linear Independence

An important concept related to linear spaces and their elements is the notion of linear
independence. In space R" (whose elements are real vectors of dimension n x 1) linear
independence can be defined in the following way.

Definition 1. A set of vectors {z1,22,...,2,} in R" is said to be linearly independent
if
Q121 + ao%o + ...+ oz, =0 (5)

implies a1 = ... = a,, = 0.

To get a sense for what this definition means, suppose that (5) holds but that some
elements of set {ay, g, ..., a,} are not zero. If one of them happens to be ay, equation (5)

would allow us to express zj as
1
Ty = o Zaixi (6)
i1#£k

Since x, obviously depends on vectors {x;} (i # k), adding it to this set would not contribute
any new information. Given that this is the case, we would have no grounds to treat vector
xk as an “independent” entity.

How does one determine whether a set of vectors is linearly independent? In order to
explain that, we first need to say a few things about how systems of linear equations are
solved using Gaussian elimination. The following two examples illustrate the main features
of this method.

Ezxample 2. Suppose that we want to solve system

Az =b (7)
where
1 0 3
A=12 2 1 (8)
111
and
1
b=10 9)
1

The main idea behind Gaussian elimination is to transform matrix A and vector b in such
a way that the matrix becomes upper triangular. This is desirable because it allows us to
compute the variables one by one (using a procedure known as backward substitution).

Since our objective is to eliminate all nonzero elements below the diagonal, we will begin
with the first column of A. If we multiply row 1 by —2 and add it to row 2, we obtain a new
matrix

1 0 3
Ai=]0 2 =5 (10)
1 1 1



If we do the same to vector b, we get

1
b= | —2 (11)
1

Because these two operations are equivalent to multiplying both sides of equation (7) by
matrix

1 0 0
Pp=|-2 1 0 (12)
0 0 1

it follows that the solution remains unchanged.
Multiplying the first row of matrix A; and vector b; by —1 and adding it to the third
row transforms the system into

1 0 3 T 1
0 2 =5 ||z |=|-2 (13)
0 1 -2 I3 0

which brings us one step closer to an upper triangular structure. It is easily verified that
such an operation is equivalent to multiplying both sides of the equation by matrix

1 0 0
P = 0 1 0 (14)
-1 0 1
which produces
(RPiA)x = PPrb (15)
where
1 0 3
0o 1 =2
and
1
P2P1b = -2 = bQ (17)
0

Since column 2 of matrix A, has a single nonzero element below the diagonal, we need
just one more step to obtain an upper triangular matrix. This step amounts to multiplying
row 2 of Ay by —0.5 and adding it to row 3, after which the system becomes

1 0 3 1 1
0 2 -5 z | = | =2 (18)
0 0 05 T3 1

Since such a transformation is equivalent to multiplying A, and by by matrix

1 0 0]
P=|0 1 0 (19)
0 —05 1
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vector x will not be affected in any way.
Observing that the matrix is now upper triangular, we can solve the resulting system

1 0 3 T 1
0 2 —5||a]|=]-2 (20)
0 0 05 T3 1

in a step by step manner, beginning with variable z3. If we do so, we obtain

0523=1 = z3=2
200 —brs3=—2 = 2x9=414 (21)
1+ 3x3=1 — x;=-5
This procedure is known as backward substitution, because it always starts from the last
component of vector x.

Our next example demonstrates how this approach can be extended to singular matrices
(i.e., matrices whose determinant is zero). We will see that in such cases system

Az =0 (22)

has infinitely many solutions (as opposed to the scenario where A is non-singular). These
solutions constitute what is known as the nullspace of matriz A, and our objective in the
following will be to find a compact representation for this space.

Ezample 3. Suppose that we are given a system of the form (22) where

(23)

O O =
N N =
N O = O
SN O =

and are asked to find all of its solutions. If we multiply the first row by —2 and add it to
row 3, we obtain

1 1 01 1 0
0210 zg | |0
0000 z3 | |0 (24)
0420 Ty 0
After one more step, Gaussian elimination transforms the original system into
1 1 01 1 0
0210 zg | | O
0000 zz3 | |0 (25)
0000 Ty 0

where the matrix is upper triangular. What makes this matrix different from the one in (20)
is the fact that rows 3 and 4 contain only zeros. As a result, the last two equations will be
satisfied for any choice of vector x.



This “built in” redundancy reduces the system to two equations in four unknowns, which
means that we can choose 3 and x4 arbitrarily. Setting z3 = s and x4 = t (where s and ¢
are unspecified real numbers), we obtain

200+ x3 =200 +5s=0 — .ng—g (26)
and
S S
l’1+3§2+l’4:l’1—§—|—t:0 - $1:§—t (27)

respectively. These expressions allow us to describe the nullspace of matrix A in a very
simple way, since the solutions of system (25) have the form

el s/2—t 1/2 -1
za | | —s/2 | —1/2 0
o | = . =s 1 +t 0 (28)
Ty t 0 1

Such a representation is clearly convenient, because it requires only two vectors (although
there are infinitely many possibilities).

An alternative approach for deriving expression (28) would be to rewrite the first two
equations in the system as

o] [ 2] (3] [o )= 0] &
If we once again set x3 = s and x4 = t, (29) becomes
117 ] [ 0 (-1
oo (2]l &

and multiplying both sides by matrix

B o

FEaErIR (32

It is not difficult to see that this matches expression (28) precisely.

produces

The procedure that we used in Example 3 is very useful when it comes to determining
whether a given set of vectors is linearly independent. The following example illustrates
how this can be done, and shows how Gaussian elimination works in cases when matrix A
is rectangular.

Example 4. Suppose that we are given three 5 x 1 vectors

1 1

v = Vg =

o = O O
S W o
<
w
I
O R O~ N
—
(V)
w
N—



and are asked to determine if they are linearly independent. If this were the case, we know
that vy, vy and vy would satisfy

a1vV1 + AoV + azvz = 0 (34)

only when a; = as = ag = 0. We must therefore check whether the vectors described in (33)
conform to this condition.
In order to do that, let us rewrite expression (34) as

1 1 2 0
0 1 -1/2 | [a 0
0 0 0 ay | = |0 (35)
1 3 1 as 0
0 0 0 0

and consider whether this system of equations has a nonzero solution. If we apply Gaussian
elimination to the matrix on the left hand side (which is rectangular in this case), we obtain
the following pair of transformations.

STEP 1
1 1 2 0
0 1 -1/2| [ 0
0 0 0 as | =10 (36)
0 2 -1 as 0
0 0 0 0
STEP 2
1 1 2 0
0 1 -1/2|[a 0
0 0 0 as | =10 (37)
0 0 0 as 0
0 0 0 0

Since the last three equations in (37) are satisfied for any choice of a1, as and ag, we need
to focus only on the first two. Following the same procedure as in the previous example, we
can rewrite these equations as

oLk =) .

and set a3 = t, (where ¢ is an arbitrary real number). If we do so, (38) becomes
11 [a ] [ -2
o 1] ] = ] 5

o] -0 7] ®
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Multiplying both sides by



we obtain
R IR TR EAR R

which indicates that the solutions of system (35) have the general form

ay —5/2
ay | =t | 1/2 (42)
as 1

Given that coefficients a1, as and a3 have nonzero values when t # 0, we can conclude that
vectors vy, vo and v are not linearly independent.

In cases such as this, it is often of interest to find a subset of vectors which are linearly
independent. With that in mind, let us consider v; and vy, and examine whether system

a1v1 + agy = 0 (43)

has a nontrivial solution. If we rewrite this system as

11 0
01 0
00 {"’1 } =10 (44)
13 |L® 0
| 0 0 | | 0 ]
and execute two steps of Gaussian elimination, we obtain
[ 1 1] [0 ]
01 0
00 {al } =10 (45)
00|L® 0
| 0 0 ] | 0]

Since the first two equations (which are the only ones that matter) have the form

oo lla =] <46>

it is easily verified that a; = as = 0 is the only possible solution. This implies that vectors
v, and vq are linearly independent.

The Concept of a Basis

Linear independence is closely related to the notion of a basis. In order to explain what
this means, let us once again consider space R®. If addition and multiplication by a number
are defined in the manner shown in (2) and (3), it is easily verified that every one of these
elements can be expressed as

x1
Tr = i) = .I‘lEl + JIQEQ + .I‘3E3 (47)
I3



where

1 0 0
0 0 1

Vectors {E1, Ey, E3} are said to be a basis in this space, since any vector x € R? can be
represented as their linear combination.

Remark 1. It is important to recognize in this context that set {Fy, Fs, F3} is not the
only possible basis, and that there are many other equally viable choices. What is common
to all of them, however, is that they consist of three vectors (which is why this space is said
to be three dimensional).

The following result establishes an important connection between bases and linear inde-
pendence in space R™.

Lemma 1.1. Any set of n linearly independent vectors in R™ constitutes a basis in this
space.

Scalar Products and Orthogonality

Bases such as {F}, Ey, E3} are interesting because they possess a property known as ortho-
normality. This property is associated with the notion of a scalar product, which represents
a mapping that transforms the elements of a vector space into a number. In space R3, the
scalar product of vectors

s
xr = To (49)
x3

and

_ " _
y=1 Y2 (50)
Y3

is defined as
(z,y) = 2"y = 2191 + T2yo + T3Y3 (51)

It is not difficult to see that this operation always produces a real number, and that
(x,r) = 22 + 235 + 23 (52)

is positive for all z # 0.
The fact that (z,x) > 0 allows us to define the norm of = as

loll = /a2y = Job +ad 4o+ a? (53)

Such a definition provides us with a convenient way to measure the “size” of this vector,
and to evaluate the “distance” between vectors z and y (which can be done by computing
||z — y||). In the special case when ||z|| = 1, we say that vector x is normalized. This turns
out to be a very useful property, both in linear algebra and in functional analysis.




Remark 2. Expression (53) is not the only way to define a vector norm - we will look
at several alternative possibilities later.

Now that we know what a scalar product is, we can introduce the concept of orthonor-
mality. In space R", elements x and y are considered to be orthogonal if their scalar product
satisfies

(z,y) =0 (54)
Because vectors Ey, Fs and F3 meet this condition (and are also normalized), we say that
set {E1, s, E3} represents an orthonormal basis in space R3. We will see that bases of this
sort play a crucial role in quantum mechanics, since they are associated with measurable
states.
The following two examples illustrate how these ideas can be applied to other types of
linear spaces.

Ezxample 5. Consider the set of all real 2 x 2 matrices, whose elements have the general
form

a21 Q22

A= { dii 12 } (55)

If we define addition and multiplication by a number as

a1 + by ag + bio
A+B= 56
l a1 +ba1  age + bao } (56)
and
cA — l cay; Cay2 ] (57)
Cag1 Ca29

respectively, it is easily verified that Property 1 of linear spaces is satisfied (as are all the
other ones). It is also straightforward to show that matrices

10 0 1 00 0 0
a-loo] m-[oo] m-[0) a-[00] o
constitute a basis in this space, since any 2 X 2 matrix can be represented as
10 0 1 00 0 0
A:alllo O:|+(112|:0 O:|+(I21|:1 O:|+a22[0 1:| (59)

The fact that this basis consists of four elements indicates that such a space is four dimen-
stonal.
A simple way to introduce a scalar product into this space involves the pairwise multi-

plication of matrix elements. If we adopt such an approach, the scalar product of matrices
A and B can be defined as

(A, B) = an1bi1 + aigbiz + az1bar + agabay (60)

(which is obviously a number). Given such a definition, it is not difficult to show that set
{E1, Es, E3, E4} represents an orthonormal basis, since

9



when i # 7 and

fori=1,2,3,4.

Ezxample 6. Let C™ be the set of all n x 1 vectors whose components are complex numbers.
In this space, the scalar product can be defined as

(z,y) = 2Ty* = 1Y) + T2y + .o+ Ty (63)

where y! denotes the complex conjugate of y;. It is not difficult to see that the scalar product
defined in (63) satisfies

(y, ) = (z,9)" (64)
(Az,y) = Az, y) (65)

and
(z, Ay) = A" (z,y) (66)

for any pair of complex vectors x,y and any complex number .
Since every vector z € C™ can be represented as

T
T2
xr = . = iL'lEl + ZL’QEQ + ...+ ilﬁ'nEn (67)
Tn
where

1 0 0

0 1 0

0 0 1

and x; are complex numbers, it follows that C™ is an n-dimensional space. Given that
(Ei, E;) = 0 when ¢ # j and that (E;, E;) =1 (i = 1,2,...,n), it is obvious that vectors
{E1, Es, ..., E,} consitute an orthonormal basis in this space.

The Gram-Schmidt Method

What other orthonormal bases exist in R™ (apart from {E1, ..., E,})? In order to answer this
question, we should first recall that any set of linearly independent vectors {vy,va,...,v,}
constitutes a basis in R" (see Lemma 1.1). What we will now consider is how one can use
such sets to construct a variety of different orthonormal bases in this space.

The Gram-Schmidt method is the simplest and most elegant way to achieve this objective.
Before we explain how this process works, however, it is helpful to describe what is meant
by the span of a collection of vectors. Given a set of n x 1 vectors S = {vy,va,..., v}, we
will define the span of S as

span (S) = {z € R" : © = aquy + agve + ... + axVk } (69)

10



What this means is that every element of span (5) can be represented as a linear combination
of vectors v, v, ..., V.

Remark 3. Note that this definition doesn’t require vectors vy, vs, ..., vx to be linearly
independent. It is also important to recognize that if vectors vy, vs,...,v, happen to be a
basis in R™, then

span (vy, Vg, .. .,v,) = R" (70)

(since every element of R™ can be represented as a linear combination of vectors {vy,vs, ..., v,}).
Given a basis {vy,v9,...,v,} in R", the Gram-Schmidt method allows us to construct a

set of vectors {&1,&s, ..., &, } such that

span (vq, Vg, . .., v,) = span (§1, &2, ..., &) (71)

and (&;,&;) =0 when i # j. Equation (71) ensures that {&1,&,,...,&,} is a basis in R™, and
the elements of this set can be computed recursively as

(vr, &1) (Vk, &2) Uk, Ep—1)

= v — & — by — /& 72
) Y T e BT b (72)
if we assume that & = v.
The following example illustrates how this procedure works.
Ezxample 7. Let us consider vectors
1 0 1
v = 0 ) Vg = 1 3 V3 = 1 (73)
1 1 0
which are linearly independent but are not orthogonal, since
(v1,v2) = (v1,v3) = (va,v3) = 1 (74)
In order to orthogonalize them, we will first set
1
él =V = 0 (75)
1
and compute & as
(va, 1)
= Vo — . 76
Tt Y 70
Observing that
(v2,&1) =1 (77)
and
(&1,6) =2 (78)
(76) becomes
1 -1/2
§2:U2—§'§1: 1 (79)
1/2

11



To find &3, we now need to compute

(v3,&1) (v3,&2)

e — SU g A30827 80
This is not difficult to do, since we know that
(v3,61) = 1 (81)
(v3,£2) =1/2 (82)
and
(&2, &) = 3/2 (83)
Substituting these values into (80), we obtain
1 1 2/3
53:7)3—5‘51—5'52: 2/3 (84)
—2/3

At this point the procedure is complete, and we can claim that &, & and &3 are orthogonal
vectors. If we divide each of these vectors by their norm, we obtain an orthonormal basis in
R? whose elements are

¢ 0.7071 ¢ —0.4082 ¢ 0.5774
1 _ . 22— | 08165 |; =2 =| 05774 (85)

Eigenvalues and Eigenvectors

Before we move on to a more advanced discussion of scalar products and norms, it is im-
portant to say a few words about eigenvalues and eigenvectors. The following definition
describes how these two concepts are understood in linear algebra.

Definition 2. A nonzero vector y; is said to be an eigenvector of matrix A if there exists
a number \; (which can be real or complex) such that

Ay = \iyi (86)
We refer to \; as the eigenvalue that corresponds to ;.

The computation of eigenvalues and eigenvectors is illustrated by the following example.

Example 8. Consider the matrix
0 1
a0 -
If A is an eigenvalue of A, then equation
(A=X)y=0 (88)

12



must be satisfied for some nonzero vector y (in this expression, I denotes the identity matrix).
Since system (88) has a nontrivial solution if and only if

A(N) = det(A — AI) =0 (89)

it follows that the eigenvalues of A are actually the roots of polynomial A(X) (which is known
as the characteristic polynomial of matrix A). In our example, this polynomial has the form

AN =X +5A+6=(A+2)(A+3) (90)

which implies that the eigenvalues of A are \; = —2 and \y = —3.
How can we determine the eigenvectors that correspond to A; and A,? For A; = —2, (88)

becomes
5= (o)

which is a singular system of equations. This property becomes obvious after we multiply
the first row by 3 and add it to row 2, which produces

[33“513}2[8] (92)

Observing that the second equation is satisfied for any choice of y;; and y;2, we can
set y12 = t (where t is an arbitrary real number). Component y;; can then be uniquely

determined as ;

yn=-—3 (93)

Given this expression, it follows that the solutions of system (91) have the general form

w=t| V] (94

The fact that t is an unspecified number indicates that we can associate infinitely many
eigenvectors with \;. Note, however, that all of these eigenvectors are proportional to vector

n=| ] (95)

This allows us to choose 7; as a “representative” for the entire set.
We can proceed in a similar way to obtain the eigenvector that corresponds to Ay = —3.

In that case we have )
3 1 Y21 . 0
)=o) )

oollm]-[0] o

after mutliplying the first row by 2 and adding it to the second row. It is not difficult to
verify that all the solutions of system (97) have the form

b=t [ ‘11/3] (98)

13

which becomes




which means that

_ -1/3

Y2 = { 1/ } (99)
can be identified as the “representative” eigenvector that corresponds to \s.

When it comes to eigenvectors and eigenvalues, symmetric matrices (which satisfy AT =
A) have some particularly interesting properties. The following three results will be especially
useful for our purposes (for the sake of consistency, I have numbered the theorems and lemmas
in the same way as in the textbook).

Theorem 1.1. If A is a real, symmetric matrix, all of its eigenvalues must be real, and
the corresponding eigenvectors must be orthogonal.

Corollary 1.1 If the eigenvalues of an n x n symmetric matrix are distinct, its normalized
eigenvectors represent an orthonormal basis in R™.

Lemma 1.6. Let A be a symmetric matrix with distinct eigenvalues, and suppose that
its normalized eigenvectors constitute the columns of matrix 7. The inverse of T" will then
satisfy

=17 (100)

Similarity Transformations and the Jordan Form

Since the eigenvalues of a matrix are one of its most important characteristics, it would be
interesting to determine which types of transformations leave them unchanged. The following
definition and the subsequent lemma will help us answer this question.

Definition 3. Matrices A and A are said to be similar if there exists a nonsingular
matrix 7' such that 3
A=T1AT (101)

Lemma 1.3. If matrices A and A are similar, they must have the same set of eigenvalues.

The fact that similar matrices have the same set of eigenvalues has several important
implications. The following one will be particularly useful for our purposes.

Lemma 1.7. Let A be a symmetric matrix with distinct eigenvalues {Aq,...,\,}, and
suppose that its eigenvectors constitute the columns of matrix 7. Matrix A can then be
transformed into a diagonal matrix

A=T1AT (102)
which has the form
A O 0
0 X -+ 0
A= . ) (103)
0 0 - M\,

This matrix is know as the Jordan cannonical form of A.
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Remark 4. Note that Theorem 1.1 ensures that eigenvalues {\i, Ag,..., A\, } are real,
since A is assumed to be symmetric. We also know that in this case T~ =TT (by virtue of
Lemma 1.6), so matrix A can be equivalently expressed as

A=TTAT (104)

Vector Norms Revisited

When we introduced the notion of a scalar product, we showed that the norm of vector
x € R" can be defined as

loll = V{w2) = \Jad + 3+ ... + a2 (105)

This particular norm is referred to as the Fuclidean norm, and is typically denoted by ||zl,.
The notion of a Euclidean norm can be extended to complex vectors as well, since the scalar
product

(z,y) = 2"y = 2y} + @205 + ..+ TRy, (106)

(which was defined in Example 6) ensures that
(z,2) = |21)* + |za? + ... + |7, (107)

is a real number.
The following lemma establishes an important connection between scalar products and
the Euclidean norm, which is known as the Schwarz inequality.

Lemma 1.4. If x and y are two vectors in R", their scalar product satisfies

(90 | < =]l vl (108)

Remark 5. It is it not difficult to show that this inequality holds for any pair of complex
vectors x,y € C™ as well.

The Infinity Norm and its Generalizations

The infinity norm of vector x is defined as

]l = max || (109)
Given a vector w whose components satisfy w; > 0 (i = 1,2,...,n), expression (109) can be
generalized as
1
z||¥ = max —|xz; 110
lzlloe = max =il (110)

This norm (which is known as the weighted infinity norm) provides us with some added
flexibility, since there is obviously an unlimited number of ways to choose vector w.

It is easily verified that these two norms satisfy the following four properties (the same
is true for the Euclidean norm).
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. The norm of any vector x € R" satisfies ||z| > 0.

. For any z € R™ and a € R we have that ||az| = |a|||z].

. The norm of z is zero if and only if z = 0.

. The inequality
[l +yll < flz]l + llyll

holds for any two vectors x,y € R™.
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