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A. 1. Zecevic

Lecture Notes for Week 7

The Order Finding Problem

Finding the prime factors of a large number is closely related to the so-called order finding
problem. This problem is of particular interest to us because conventional computers cannot
solve it in a reasonable amount of time, but quantum computers can. In view of that, we
will now explain what is meant by “order finding”, and describe a quantum algorithm that
can accomplish this task efficiently (we will establish a connection between order finding and
prime factorization in our next lecture).

We begin our discussion with the following definition.

Definition 1. Suppose that x and N are positive integers with no common factors. We
will say that r is the order of © modulo N if it represents the smallest integer that satisfies

2" =1 (mod N) (1)

In order to explain how one can compute r for a given choice of x and N, we will need the
following two preliminary results.
Lemma 6.1. If r is the order of x modulo N, then r < N.

Lemma 6.2. Let r be the order of x modulo N, and let k and j be two distinct positive
integers that are smaller than r. Then,

2¥ mod N # 27 mod N (2)

The proofs of both lemmas are quite straightforward, and are provided in the texbook.

Order Finding and Eigenvalue Estimation

The quantum algorithm for order finding relies to a large extent on the eigenvalue estimation
method that we previously examined. To get a sense for how this algorithm works, let us
assume that we have n qubits at our disposal, and that the standard basis for the resulting

n-particle system has the usual form {¥q, ¥y, ..., Won_1}. Given a pair of co-prime integers
and N, we will now define a new set of functions {®q, ®;,...,®,_;}, which can be described
as

r—1
1 _ 2misk
(I)s - \/F kE Oe T l:[J:ck mod N (3)

In this expression, r denotes the order of x modulo N, and s is an integer that can take
values {0,1,...,r — 1}.

Remark 1. It is important to keep in mind that there is no direct relationship between
n and N. In this context, n represents the number of qubits in the system while N defines
the order of z.



Our next step will be to define an operator U, which transforms a basis function v, as
Uz\I/y = \Ilzy mod N (4)

This is equivalent to saying that )
Ux\Ily = \I/z (5)

where z is the remainder that is obtained when zy is divided by N. As we saw previously,
this remainder must satisfy 0 < z < N by definition.

Operator [, is of interest to us because {®g, 1, ..., P,_1} happen to be its eigenfunctions
(this is not difficult to show - a proof is provided in the textbook). It can also be shown
that the eigenvalue which correspond to function ®, has the form A\, = = "7 = e2™ws, This
means (among other things) that we can directly apply the quantum eigenvalue estimation
algorithm to compute the first 7 bits of w, = s/r for any s such that 0 < s < r — 1. As

before, we will denote this approximation by ;.

Some Practical Considerations

Since r appears in the denominator of w;, our objective in the following will be to find a way
to extract this information from @,. Prior to doing that, however, we need to adress two
practical problems that arise in this context.

The first one has to do with the fact that eigenfunctions

—1
271' k
Z 2 :ck mod N (6)
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are unknown, since they depend on r (and r is the number that we want to compute). As
a result, we cannot use them as the input to the quantum circuit shown in Fig. 1. It turns
out, however, that this is not an insurmountable problem, since basis function Wy (which is
readily available) satisfies

v, — % g)cbs (7)

This is not difficult to show, and a proof is provided in the textbook.

Given that this is the case, what will the output of our quantum circuit look like if we use
U, as the input instead of ®;? When we previously discussed this scenario (in the context
of the eigenvalue estimation algorithm), we established that the output will have the general
form

r—1
Wy = Z:O s[4, 0 D Y0 D ... ®Y, ) ® By (8)
where indices {m§5 ,mgs), o ,mgf)} correspond to
@, = 0.m{Pml? . m® 9)

(which matches the first 7 bits w).
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Figure 1: The first step of eigenvalue estimation.

In this particular case, coefficients o have the form

o = % (10)

which means that all possible outcomes have the same probability

= (1)

|as
r

As a result, the most that we can say about the measured state is that it will correspond
to one of the eigenvalues A\, = e?™s of operator U,. Recalling that s can take values

s=0,1,...,r — 1 and that w, = s/r, this is equivalent to saying that the computed value
Wy = O.mgs)mgs) C.om% will approximate a randomly chosen number from the set
1 2 r—1
I'r)y=4¢-, —,... 12
m={5 2. (12)

Although this introduces a certain amount of ambiguity into the process, we should point
out that it does not pose a significant challenge, since all elements of set (12) have the same
denominator (and r happens to be the number that we are interested in). We will see shortly
how this number can be computed once @, is known.

The second issue that we must resolve has to do with the procedure for estimating
eigenvalues, which requires that we replace ®, with ¥, in Fig. 1, and then evaluate functions
of the form [7531 (¥y) for j =0,1,...,n—1. On first glance, this appears to be a major obstacle,
since we must apply operator U, as many as 2! times to function ¥;. Fortunately, there is
an elegant way around this potential bottleneck, which relies on the following simple lemma.

Lemma 6.3. Let U, be the operator defined in expression (4), and let ¥, be a function
that belongs to the standard basis {Wq, Wy, ..., Won_1}. Then,

Uf(q]y> = ka mod N(\ij> (13>
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This lemma is useful because it demonstrates that forming function (A]g?](\lfy) does not

require 2/ successive applications of operator U,, and that we can achieve the same objective

by applying operator U ,; _, n to ¥, once. This simplifies matters greatly, since operators

U, yoa N (j = 0,1,...,n — 1) are not difficult to implement. To see why this is so, it
suffices to observe that % mod N are numbers that take values from set {0,1,...,N —

1}. Consequently, applying Ug’ to function ¥, entails evaluating w = 22 mod N, and
subsequently computing U, (V).
The following example illustrates how this computation is performed.

Example 1. Suppose that x =5 and N = 21. If we assume that our quantum computer
has n = 30 qubits, the eigenvalue estimation procedure will require applying operators
{Us,U2,...,U2"} to function ¥;. The highest of these powers is 229, which is obviously a
very large number. Fortunately, Lemma 6.3 ensures that

7029

Z2W) = Ugzo g0y (W1) (14)

so all we need to do is compute N
w =5 mod 21 (15)

In order to evaluate expression (16), we will make use of the fact that
™% mod N = [z™ mod N]* mod N (16)

(which is a result that we already encountered in the context of RSA encryption). Since 22°
is too large to input directly into a calculator, we will break the procedure down into 3 steps.

STEP 1

52 mod 21 = 52°2” mod 21 = 5262” mod 21 = [5*%mod 21> mod 21 = )
= 162" mod 21 = 162"2" mod 21
STEP 2
16272 mod 21 = 16'%2" mod 21 = [16!2® mod 21]* mod 21 = as)
= 42" mod 21 = 422 mod 21 = 4128128 104 21
STEP 3 s
4128128 mod 21 = [4"%® mod 21]"™ mod 21 = (19)
=16"%mod 21 =4
Having established that N
5 mod 21 =4 (20)
we now obtain e ) )
U52 (\IJI> = U5229 mod 21(\111) = U4(\I/1) (21)

which is easily implemented.

Remark 2. In evaluating expressions (17), (18) and (19), we relied on the fact that
numbers such as 52°® mod 21, 16'2® mod 21 and 4'?® mod 21 can be computed using standard
modular exponentiation calculators.



Extracting r Using Continued Fractions

Since the algorithm that we just described approximates a random element of set T'(r)
defined in (12), we need to consider how this information can be used to compute r. The
most effective way to do that is based on the so-called continued fraction method, which we
will now explain.

To see how this approach works, suppose that z is a rational number, and that we would
like to represent it using a sequence of successive approximations p,/q, (n = 0,1,...,m).
The fractions p,/q, that appear in this iterative process are know as convergents, and we
will assume that they can be expressed as continued fractions whose coefficients are integers
lag ay ... a,). The following example illustrates what this means.

Ezample 2. Let = 500/97 be a rational number that we would like to approximate by
a sequence of continued fractions. As a first step, we can rewrite x as

15
=54+ = 22
x + o (22)

If we retain only the integer part, our initial approximation of x becomes

2 =5=q (23)
If we now express (22) as
1 1
$:5+g:5+6+—1 (24)
15 15

and once again retain only the integer part, we obtain a more accurate approximation of x

which has the form ) )
(1) — 5 — = J— 25
x tE=wt o (25)
Since such an expression is uniquely defined by ay and a4, it is usually described by the pair
[ap a1] (which is [5 6] in this case).
In the next step, we have

T=5+ 5 =5+ 7 (26)
7 7
which allows us to approximate x as
@ 1
' =ap+ =5+ —7 (27)
a; + — 6 + =
a9 2

Observing that expression (27) involves three integers, we can equivalently represent it as
2@ =Tlag a1 azx] =[5 6 2].



Note that the final step in this process requires no further computation, since (26) already

has the desired form )
r=12% =a+ —T (28)

a2+—
as

All that we have to do at this point is recognize that a3 = 7, and that x can be precisely
described as z = 2®) = [ag a; ay az] =[5 6 2 7]

In order to specify the sequence of convergents that are obtained using this method,
we need to represent (), M, £(® and 2® as fractions. We can do this by evaluating
expressions (23), (25), (27) and (28), which produce

Lo _Po 5
do 1
Lo _p_ 3l
q1 6
29
L@ P2 67 29
q2 ]_3
L@ s _ 500
ds 97

It is not difficult to see that each successive convergent represents a better approximation of
x, and that the last one matches it precisely.

Remark 3. It is important to recognize that the continued fraction method actually
produces two valid results

1
Dh — oo+ ; (30)
Ap—1+ —
Qg
and ]
@ = Qo —+ 1 (31)
ag_1 + —1
(ak - 1) + -

1

This “ambiguity” is advantageous, since it allows us to choose whether x should be repre-
sented by an even or odd number of terms in the expansion.

Computing a sequence of rational approximations like the one in (29) can become quite
cumbersome in practice, particularly if the number of iterations is large. To see why this is
so, we should observe that x is always initially approximated as

Do
qo

= ay (32)

(which implies that py = ag and ¢g = 1). In the next step, we have an approximation of the
form [ag aq], which represents a continued fraction that is made up of two coefficients. In



this case, the convergent has the form

1 apa; +1
P+ —=20 o (33)
q1 (451 a

so p; and ¢; are related to ag and a; as
p1 = agay + 1
(34)

q1 = a1

In the third step, we have a continued fraction that is defined by three coefficients [ag a4
as]. This allows us to approximate = as

1 1
P2 . gt a ag(aras + 1) + as (35)
q2 ag + — ajaz + 1 ayap + 1
D)
and express py and g9 as
P2 = Aga1as + g + as (36)
and
g2 = aaz + 1 (37)

We could obviously continue this procedure beyond the third step, but deriving analytic
expressions for py, and g becomes increasingly harder as set {a;} grows in size. The following
theorem shows, however, that there is a way around this problem, and that convergents can
be computed recursively for k > 2.

Theorem 6.1. Let {ag,a1,...,a,} be a given set of positive integers, and let us define
Po, P1, qo and q; as
Po = Qo
g =1
(38)
p1 = apar + 1
g1 = a1

Suppose further that continued fraction expansions defined by coefficients [ag a; ... a,_2]
and [ag aj ... a,_1] correspond to p,_o/q, 2 and p,_1/q,_1, respectively. The continued
fraction expansion [ag aj ... a,] can then be expressed as p,/q,, where

Pn = QpPn-1 + Pn—2
(39)
In = GnGn-1 1+ Gn—2

The following example illustrates how Theorem 6.1 can help us compute py and g effi-
ciently in cases when x is given in decimal form, and more than three iterations are needed.

Ezxample 3. Suppose that we would like to represent x = 0.150537634 as a sequence of
fractions. Since x < 1 in this case, our initial approximation will obviously be

2 =0 = qq (40)
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Our next step will be to take the reciprocal of 0.150537634, and represent = as

0f—~ (41)

p— 0 p—
r =0 56128 6+ 0.6428

From this expression, we can easily deduce that a; = 6.
Before we proceed to identify p; and ¢;, we should say a few words about the precision
that this process requires. In principle, it is always desirable to retain as many decimals
as possible when computing continued fractions. We will do so in each iteration, but will
display only the first 4 decimals of the result (for the sake of simplicity).
Because rounding is unavoidable, in each step we will also monitor the approximation
error, which is defined as
Pk

— -

k) — |x(k) _ x‘ _
qk

(42)

This will allow us to precisely distinguish between very small errors, and ¢*) = 0 (which is
the point when the algorithm terminates).

With that in mind, let us now return to expression (41), which allows us to approximate
T as

1 1
1 — =04+ = 43
xT ag + 0 + 6 ( )
This tells us that p; = 1 and ¢; = 6, and the error after the first step becomes
1
e® = oM — g| = @—x‘ - ‘——x = 0.01613 (44)
q1 6
To find the next convergent, we should observe that
1 1 1
=04+ — =04+ —"—" =0 45
T 5T 06428 +6+ 1 +6+ I (45)
1.5555 14 0.5555
If we retain only the integers, we obtain
1 1 1
o = ag+ — =04 — = 1 (16)
ay + — 6+ —
a9 1

from which we can conclude that as = 1, po = 1 and ¢o = 7. The corresponding error is
easily computed as

@_i — 1_1’
7

(2 — |$(2) _ $| _
q2

= 0.00768 (47)

From this point on, we can use expression (39) to calculate py and g recursively. In
order to do that, it will suffice to focus only on the last number that was computed in the
continued fraction expansion. The coefficients a, pr and g, that are obtained in this manner
are shown below.

Iteration 3



Since the denominator of the last term in (45) is
1
(48)

1
14+0.5555 =1 =
+ + 1.8000 1+ 0.8000

it follows that a3 = 1, and that

p3 = agpa +p1 =2 (49)
g3 = a3qa + q1 = 13
The error after this step will therefore be
2
e® =12® — 2| = bs x‘ = ‘— — x| = 0.00330852 (50)
a3 13
Iteration 4
If we rewrite the denomonator of (48) as
1 1
1408000=14+—=14+—-— 51
+ + 1.25 + 14 0.25 (51)
we obtain a4 = 1 and
pa = asps+p2 =3 (52)
qa = aqq3 + g2 = 20
The error after this step is
3
eW = 2@ — | = B _ | = |2 — 2| = 5.37634- 10 (53)
q4 20
Iteration 5
Since expression
1
1+0'25:1+21 (54)

produces an integer in the denominator, we know that this will be the final step in the

process. Given that as = 4 in this case, we obtain

ps = asps +p3 = 14
(55)
g5 = as5qs + g3 = 93
and the approximation error is
() _ [6) _ o — |P5 _ |14 _
eV =gV —zl=|——-z2=|7Z—x= 26
0 -] = |2 - o] = |55 (50
Since the error is zero, the continued fraction expansion is now complete, and has the form
1 1
$(5) =ag+ 1 =0+ 1 (57>
(1:2 + —1 ]. + —1
as + 1 1+ —7
ay + — 1+ Z



Having found all the coefficients p, and g, we can easily compute the sequence of con-

vergents that approximate x as
20 — Po

=0
qo0
Lm_p 1
q1 6
q2 7
) (58)
L3 P38 _ 2
qs 13
L _ P 3
qe 20
Lo b 14
qs 93

As in Example 2, this sequence produces a successively better approximation of z in each
step, and the final convergent matches it exactly.

The Final Step

We are now ready to apply continued fractions to the order finding problem. In order to
do that, we will need the following theorem.

Theorem 6.2. Suppose that z is a rational number, and that fraction p/q approximates
it in such a way that inequality

1
m—Z_"< (59)

a] = 2¢?

holds. Then, p/q represents a convergent in the continued fraction expansion of z.

To see how this result can help us solve the order finding problem, we first need to decide
how many bits of w, we want to compute. For reasons that will become apparent shortly,
we will set 7 = 2L 4+ 1, where L represents the first integer that is greater than or equal to
log, N (this number is usually denoted as L = [log, N]). Given our choice of 7, we now
need to determine the number of qubits that are needed to obtain such an approximation.

As we saw in our earlier discussions, n would have to satisfy

1
n > T—|—10g2(2+%) (60)

in order to ensure this level of precision with probability 1 — e. If this condition is met, the
error of our approximation can be bounded as

|5 — ws| =

s — f‘ < 97T =921 (61)
T

(since we chose to match the first 7 bits of wy).
Observing that

—2L—-1 __ 1
2 = 57 (62)
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and recalling that Lemma 6.1 implies

r< N =2leN <ok (63)
it follows that 1 1
2202 ~ 212 (64)
As a result, we have that
s — ;‘ <9721 o % (65)

which means that condition (59) in Theorem 6.2 is satisfied. From this, we can conclude
that choosing 7 = 2L + 1 guarantees that s/r will be a convergent in the continued fraction
expansion of @;.

This result allows us to compute r precisely by following the procedure described in
Example 3 (note that @, is certain to be a rational number, because the algorithm for
eigenvalue estimation always produces an approximation with a finite number of bits). Since
s/r is a convergent in the expansion of @,, we know that expression

Pk

S
=2 66
o (66)

will hold for some k. For this particular £, the integer g, in the denominator will equal r,
which represents the order of x modulo V. In view of that, we can say that solving the order
finding problem amounts to checking whether x% — 1 is divisible by N for £k =0,1,2,... ,
and identifying the first number ¢, that satisfies this condition.

11



Prime Factorization and Order Finding

In order to explain how the order finding problem relates to prime factorization, we first
need to introduce two important concepts - Fuler’s ¢ function, and the notion of a cyclic
group. We begin with the following definition.

Definition 2. Euler’s function ¢(n) represents the number of positive integers that are
smaller than n and are co-prime with it.

To get a sense for what this function looks like, it is helpful to observe that

op)=p—1 (67)

for any prime number p > 1. Tt is not difficult to see why this is so, since p (being a prime
number) is not divisible by any number other than itself. Consequently, every number that
is smaller than p must be co-prime with it. Note that this includes 1 as well, since 1 is
co-prime with every number by definition (in other words, ged (p,1) = 1 for any choice of
p)-

The situation is somewhat more complicated when it comes to numbers like p®, where
p is prime and o > 1. In such cases, the Euler function cannot be evaluated by inspection,
since p® is divisible by p, p?, ... , p®~ 1. It is not difficult to show, however, that

e(p®) =p*'(p—1) (68)

which is something that we will use extensively in our discussion of cyclic groups.

We now provide two theorems which will help us describe another important property of
function ¢(n). The first of them (which is know as Fermat’s Little Theorem) is a fundamental
result in number theory which dates back to the 17th century.

Theorem 5.7. (Fermat’s Little Theorem). Let p > 1 be a prime number, and assume
that a is an arbitrary integer. Then,

a? = a (mod p) (69)
If a is co-prime with p, we also have that

a’~!' =1 (mod p) (70)

Although this result is restricted to exponents that are prime numbers, it turns out that
expression (70) can be generalized to a broader class of integers. The following theorem show
how that can be done using function p(n).

Theorem 5.8. Suppose that a and n are co-prime. Then,

a?™ =1 (mod n) (71)

12



A Brief Overview of Group Theory

The notion of a cyclic group is a bit more complicated to explain, and requires a brief review
of group theory. In general, a group can be thought of as a mathematical object that consists
of a set G = {g1,...,9,} and an operation denoted “o” which is defined on its elements.
This operation must have the following four properties.

Property 1 (Closure). Any two elements of G satisfy
giogi €G (72)
Property 2 (Associativity). Any three elements of G satisfy

(giogj)ogr =gio(g;°9k) (73)

Property 3 (Identity Element). There exists an element e € G such that
gio€=gi (74)

for any ¢g; € G.

Property 4 (Inverse Element). For any g; € G there exists an element g; ' € G such
that
giogi ' =e (75)

The following example illustrates how these properties can be interpreted.

7

Ezxample 4. Let G denote the set of all integers, and let “o” represent standard addition.
We will now show that this set constitutes a group by verifying that each of the four properties
described in equations (72) - (75) holds.

Property 1. If a € G and b € G, it is obvious that
a+bed (76)

since the sum of two integers is an integer.

Property 2. For any three integers a, b and ¢
(a+b)+c=a+(b+c) (77)

holds true, since integers can be added in any order.

Property 3. The identity element in G is 0, since
a+0=a (78)

for any integer a (note that 0 is considered to be an integer as well).

Property 4. The inverse of a € G is —a, because
a+(—a) =0 (79)
Since a is an integer, so is —a.

13



The group that we will be most interested in is denoted by Z, and consists of all positive
integers that are smaller than n and are co-prime with it. For any pair of elements a,b € Z7%,

(1))

operation “o” is defined as
aob=abmodn (80)

(which amounts to modular multiplication).
It is not difficult to show that Z* has all the properties of a group, with 1 as its identity
element. The following example demonstrates this for n = 5.

Ezxample 5. The elements of group ZZ are obviously {1, 2,3, 4}, since all of these numbers
are smaller than 5 and are co-prime with it. We will now show that Properties 1-4 hold (this
will not be a formal proof, but it will nicely illustrate some of the main points that were
previously made).

Property 1. Let us consider a = 2 and b = 3, both of which belong to ZZ. In that case,

we have
aob=203=2-3modb=1 (81)

since
6=1-5+1 (82)

Observing that 1 is an element of ZZ, the closure requirement is obviously satisfied in this
case.

Property 2. Suppose that a = 2, b = 3 and ¢ = 4. Given that
304=3-4mod 5 =2 (83)
we can conclude that
20(304)=202=2-2mod 5 =14 (84)
On the other hand, we also know that
(203)0o4d=104=1-4mod 5=14 (85)
by virtue of (81). As a result, we can claim that the associative property holds for this choice

of a, b and c.

Property 3. It is not difficult to see that the identity element in Z7 is 1. This follows
directly from the fact that
aol=a-1modb5=a (86)

for any integer a < 5 (since @ = 0 -5 + a in all such cases). This obviously applies to the
elements of Z¥, since they must be smaller than 5 by definition.

Property 4. To illustrate that every element of Z¥ has an inverse, let us pick a = 3 as
a test case. Because 3 is co-prime with 5, we know that 35_1 exists, and can be computed
using Fuclid’s method. If we do so, we obtain

31 =2 (87)

as one of the possible values. It is easily verified that 2 is the inverse element of 3 in this
group, since 2 € ZF and
203=2-3mod5=1 (88)

14



We can therefore conclude that Property 4 is satisfied for a = 3.

W "

Having explained what operation “o” means in group Z:, we now need to extend this
idea to exponentiation. That is not difficult to do, because we can define the k-th power of
element g € 7 as

fi(g) =gogo...0g (89)

(13

(which amounts to applying operation “o” k times). The following simple lemma shows
that in group Z* function f;(g) corresponds to the remainder that is obtained when g¢* is
divided by n.

Lemma 7.1. Let fi(g) be the k-th power of element g € Z* (in the sense defined by
equation (89)). Then, fi(g) can be expressed as

fr(9) = ¢* mod n (90)

Cyclic Groups and Prime Factorization

A subset of elements {g1,...,gn} C G is said to generate group G if every member of this
group can be expressed as

T = fr,(91) © fr(g2) © ... © fr,,(gm) (91)

where “o” denotes the operation that characterizes the group, and f,(g;) represent powers

of g;. In the special case when a single element g generates the entire group, we say that the
group is cyclic. Any member of such a group can be expressed as

v = [i(9) (92)

where £ is a positive integer.

The notion of a cyclic group is of central importance for the prime factorization problem,
since group Z* falls into this category when n is chosen in a particular way. The following
theorem specifies how this choice should be made.

Theorem 7.1. Suppose that p is an odd prime number, and that « is a positive integer.
Then, ZJ. constitutes a cyclic group, and each of its elements can be represented as

z = fi(g) = g" mod p* (93)

where g € ZJ. is a group generator, and k is a positive integer.
Theorem 7.1 has several useful corollaries, two of which we describe below.

Corollary 7.2. Values of & that exceed ¢(p®) will not produce any new elements of Z7..
This is why we use the term ’cyclic’ to describe such groups.

Corollary 7.3. For each k in the set {1,2,...,¢(p%)}, expression (93) produces a
different element of Z7,, and k = p(p®) corresponds to the identity element in this group.

The following result (which represents a generalization of Fermat’s Little Theorem) de-
scribes another important property of generators in group Z..

15



Lemma 7.2. Let g be a generator in group ZJ.. Then, k = (p®) is the smallest power
of g that satisfies
g" =1 (mod p®) (94)
The only other values of k& with this property are multiples of p(p®).

To get a sense for what group Z. looks like, we now provide two examples that illustrate
how generators can be found for different choices of p and «.

Ezample 6. Suppose that p = 5 and o« = 1. We know that ¢(p®) = p — 1 = 4 (since
p is a prime number), and it is easily verified that the elements of group ZZ are {1,2,3,4}.
Theorem 7.1 additionally tells us that at least one of them must generate the entire group.
If we check each element (except for 1, which cannot be a generator) for this property, we
obtain the following;:

For g, = 2:
21 =2=0-5+2 = gimodbs=2 = fi(g1)=2
2=4=0-5+4 = gimodb=4 = fo(q)=4
22=8=1-54+3 = ¢gimodb=3 = f3(q1)=3 o
20=16=3-5+1 = gimodb=1 = fi(g1) =1

For g, = 3:
31 —-3=-0-5+3 — g modb5=3 = fi(g) =3
P2—_—09—=1.5+4 = gimodb=4 = fo(gp)=4
P=21=5-5+2 = gmodb=2 = f[f3(g)=2 9
31=81=16-5+1 = gomodb=1 = fi(g) =1

For g5 = 4:
Al =4 =0-5+4 = gsmodb5=4 fi(gs) =4
42-16=3-5+1 = ¢ mod5=1 falgs) =1 (97)
42 =64=12-5+4 = gimod5=4 f3(gs) =4
44 =256=51-5+1 = gimod5=1  fy(gs3) =1

From this, we can conclude that group ZZ actually has two different generators, ¢g; = 2 and
ge = 3.

Since ¢(p*) = 4 in this case, Corollary 7.2 implies that powers higher than 4 cannot
produce any new elements of ZZ. This is easily verified by considering one of the generators
in this group (say, go = 3), and computing f5(g2), f6(g2), etc. If we do so, we obtain the
following values

35 =243 =48-5+3 = g¢gomod5=3 = f5(g2)
3 =720=145-54+4 = ¢gmod5s=4 = fs5(g0)
37=2187T=437-54+2 = ¢gImod5=2 = f:(g2)

3
4
5 (98)
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all of which already appear in (96). It is also readily observed that the two generators of
this group satisfy

gf(pa) mod p® = gf mod 5 =1 (99)

and that ¢(p®) is the smallest exponent with this property. This is obviously consistent with
Lemma 7.2.

Ezxample 7. Suppose that p = 3 and o = 2. In this case we have

e(*)=p*'(p—1)=6 (100)

so we know that group Zg consists of 6 different elements. These elements are {1,2,4,5,7,8}
(3 and 6 have been excluded, since they have common divisors with 9). Testing each element
of the group, we obtain:

For ¢, = 2:
21=2=0-942 = gimod9=2 = fi(g1)=2
22=4=0-944 = g¢gimod9=4 = fo(g1)=4
P -8-0.948 — @modd=8 — fy(g)=28 o
20 =16=1-94+7 = gimod9=7 = fi(q)=7
2=32=39+5 = g¢gimod9=5 = f5(q1)=5
26=64=7-941 = ¢gimod9=1 = fo(g1)=1
For g, = 4:
4'=4=0-9+4 — gimod9=4 = fi(g) =4
42=16=1-94+7 = ¢gmod9=7 = fo(g) =T
43=64=7-9+1 = ¢gmod9=1 = fi3(g)=1 (102
P=256=28-914 — gimod9=4 — fi(g)=4
45=1,024=113-947 = ¢gmod9=7 = f5(g2) =7
4=4096=455-9+1 = ¢Smod9=1 = fs(g)=1
For g3 = 5:
5l—5-0-945 — gmod9=5 = fi(gs) =5
5 =925=2.947 — @Zmod9=T7 = folgs) =7
5 = 125—13-9+8 — PFmod9=8 — fylgs) =8 -
5 =625=69-9+4 = gimod9=4 = fi(g3)=4
5° = 3,125 = 347-9 + 2 — g¢gmod9=2 = f5(g3) =2
5 =15,625=1.736-9+1 — ¢fmod9=1 — fs(gs) =1

—_
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For g, =T:

'=7=0-9+7 = gimod9=7

?=49=5-9+4 = gimod9=4

7 =343=38-9+1 = gimod9=1

7 =12,401=266-9+7 = gimod9=7

70 =16,807 = 1,867-9+7 = g¢gimod9=7

70 =117,649 =13,072-94+1 = g¢imod9=1

For g; = &:

8 =8=0-9+38 — g¢g: mod 9=38
§2=64=7-9+1 — ¢g2mod9=1
8 =512=56-9+38 — ¢ mod 9=38
84 = 4,096 = 455-9 + 1 — gimod9=1
8 = 32,768 = 3,640-9 + 8 = ¢f mod 9=38
80 = 262,144 =29,127-9+1 = ¢S mod9=1

el

) =28
folgs) =1
f3(g5) =8
fa(gs) =1
f5(gs) =8
fo(gs) =1

These results indicate that group Z§ has two different generators, g = 2 and g3 = 5. As in
the previous example, it is easily verified that powers of g higher than 6 do not produce any
new elements, and that the two group generators satisfy

(e3

g?

)modpo‘:g?mod9:1

Note that the other elements in this group (g = 4, g4 = 7 and g5 = 8) satisfy

gF mod p* =1

for values of k that are smaller than ¢(p®).

(106)

(107)

Finding Non-Trivial Divisors of Composite Numbers

Since the prime factorization of N entails finding its non-trivial divisors (i.e. divisors that
are neither 1 nor N), we now need to show how that can be done. As a first step, we will

establish that all numbers of the form

r=1+aN
and
xr=—-14+06N
are solutions of equation
r? =1 (mod N)
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Note that the first group of numbers satisfies

r—1=aN < z=1 (mod N) (111)
and that the second one satisfies

r+1=pN < z=—1(mod N) (112)

Because of that, such solutions are commonly referred to as “trivial”.
We can verify this property directly, by examining each scenario separately.

CASE 1. If
r=1+aN (113)

we have that
?—1=(aN+1?—-1=a?N*4+2aN+1-1=

(114)
= (a*N +2a)N = o1 N
We can therefore conclude that all such numbers are solutions of equation (110).
CASE 2. If
r=—-1+fpN (115)
e P 1= (BN 1) 1= N0
?—1=(BN—-1)"—-1=p°N*—-2N+1—-1=
(116)

= (82N — 28)N = 03N
which means that equation (110) is once again satisfied.

Having shown this, we can now group the trivial solutions of equation (110) into two
sets:
Si;={..1-2N,1-N,1,N+1,2N+1,---} (117)

and
So={..—1-2N,—-1—-N,-1,N—12N—1,.--} (118)

Note that both of these sets have infinitely many elements.

The following theorem shows how we can combine this result with Euler’s method to
compute a non-trivial factor of a composite number N. As we mentioned earlier, this is
important because it represents a key step in the process of prime factorization.

Theorem 7.2. Let N be a composite number, and suppose that z is a non-trivial
solution of equation (110) that satisfies 1 < & < N. Then, at least one of a = ged (v — 1, N)
and b = ged (x + 1, N) is a non-trivial factor of N.

Theorem 7.2. indicates that the problem of finding a non-trivial divisor of N can be
reduced to identifying a non-trivial solution of equation (110). The following theorem will
help us develop a systematic procedure for computing such a solution.

Theorem 7.3. Let N be an odd composite number whose prime factorization has the
form
N =p"p3* ..o (119)
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Suppose further that z is randomly chosen from set {1,2,..., N — 1}, and that = € Z}.
This implies that x is co-prime with N, so r (which represents the order of z modulo N) is
properly defined. Under such circumstances, the probability that r will be an even number
which satisfies

z"? # —1 (mod N) (120)
is no lower than 1 — (1/2)™.

Remark 4. Note that this result explicitly refers to group Z3%, which explains why it
was necessary to study its properties. The fact that this group is cyclic when N = p(p®) is
a key step in proving Theorem 7.3.

A Quantum Algorithm for Prime Factorization

The quantum algorithm for prime factorization involves a sequence of steps, the first three
of which are designed to check whether a non-trivial factor of N can be determined in a
way that does not involve a significant computational effort (and can therefore be executed
efficiently on a classical computer).

STEP 1. Check if N is an even number. If so, keep dividing by 2 until you obtain
N = 2°M, where M is an odd number.

STEP 2. Check if N has the form N = a®, where a > 1 and b > 1. If so, a is guaranteed
to be a non-trivial factor of N. If N is L bits long, it can be shown that computing a and b
requires no more than L — 1 steps (see Lemma 7.4 in the textbook).

STEP 3. Randomly pick a positive integer x such that 1 < x < N, and check whether
w =ged (z, N) > 1. If this happens to be the case, w will be a non-trivial factor of N by
definition. Such a procedure involves Euclid’s algorithm, and can be executed on a classical
computer.

STEP 4. If Steps 1-3 fail to produce a non-trivial factor of NV, it is necessary to implement
a special procedure which involves finding the order of x modulo N. We should reiterate
that this is something that classical computers cannot do in a reasonable amount of time
when N is large, but quantum computers can.

Before we describe how this procedure works, we should recall that Step 4 is executed
only if we have determined that N is odd (in Step 1), that it has multiple prime factors (in
Step 2), and that the randomly chosen integer x in Step 3 is co-prime with N (and therefore
belongs to group Z5). As a result, we can invoke Theorem 7.3 directly.

This theorem tells us that computing the order of x modulo N is likely to yield an even
r that satisfies

z"/? % —1 (mod N) (121)

The probability that this will happen is at least 0.75, because we already established that
m > 2 in Step 2. Since we are dealing with probabilities, it is possible that we will not be
successful in the first attempt, and that we will obtain an r that is either odd, or fails to
satisfy condition (121). However, repeating the procedure several times is bound to produce
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the desired outcome. Note that this will not require an excessive amount of time, since we
have an efficient quantum algorithm for determining the order of a number.

Suppose now that we have picked an integer x that satisfies the conditions of Theorem
7.3. To see how this theorem can help us compute a non-trivial factor of NV, we should first
observe that 2"/? is certain to be an integer when r is even, which allows us to represent it

as
z"? = aN +y (122)

where 0 < y < N. It is not difficult to show that the remainder y satisfies equation
y*> =1 (mod N) (123)
In order to do that, we will make use of the fact that
7" = (aN +y)* = o’ N* + 2aNy +y* = y*> + uN (124)
Recalling that r is the order of x modulo N, we know that " satisfies
" =1+ 8N (125)
Equating (124) and (125), we now obtain
V¥ +uN=1+pN = > =1+B-puN=1+0N (126)

which is obviously equivalent to (123).

Since y is the remainder of dividing z"/2 by N, we know that it must satisfy 0 < y < N.
Equation (126) additionally tells us that y cannot equal 0. To see why this is so, it suffices to
observe that substituting y = 0 into this equation would produce 0 = —1/N. That, however,
would lead to a contradiction, because o must be an integer and N is assumed to be greater
than 1. Taking this into account, we can conclude that

1<y<N (127)

We will now show that y cannot be a trivial solution of equation (123) if r is even and
satisfies condition (121). In order to do that, we should first recall that this equation has
two sets of trivial solutions:

Si={.,-2N+1,-N+1,1,N+1,2N+1,...} (128)
and
So={..,-2N-1,-N-1,-1,N—-1,2N—-1,...} (129)
If y happened to belong to set Sy, it would have the form
y=—-14+EkN (130)
and equation (122) would produce
e =aN+y=aN —1+kN=—-1+(a+k)N (131)
Since this implies that
2"* = —1 (mod N) (132)
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condition (121) would be violated, and we would have a contradiction. From this, we can
conclude that y ¢ Ss.
If we assume that y € 51, it would satisfy

y=1+kN (133)
for some integer k. In that case, 27/ could be expressed as
g =aN+y=aN+1+kN =1+ (a+k)N (134)

which is equivalent to
2% =1 (mod N) (135)

Since r is even, we know that /2 must be an integer. That, however, leads to a contradiction,
since the smallest integer that satisfies this condition is 7 (by definition). Consequently, y
cannot belong to set S either.

The fact that y ¢ S; also rules out the possibility that y = 1 (since 1 is a member of this
set). As a result, inequality (127) becomes

l<y<N (136)

Given that y satisfies 1 < y < N and is a non-trivial solution of equation (123), we can now
apply Theorem 7.2, and claim that at least one of a = ged (y + 1, N) and b = ged (y — 1, N)
must be a non-trivial divisor of N.

If we repeat this algorithm recursively, we will eventually obtain the prime factors of V.
As noted earlier, such a procedure is feasible because all four steps (including the quantum
order-finding algorithm) can be performed efficiently. The following example illustrates how
Step 4 works in practice.

Example 8. Suppose that we are interested in determining the prime factors of N = 273,
and that we randomly picked x = 10. It is not difficult to show that = belongs to group 23,
since z < 273 and

ged (10,273) =1 (137)

We can therefore proceed directly to Step 4, and execute the order finding algorithm. If we
do so, we will find that the order of x modulo 273 is r = 6.
Observing that
2"? =10° = 3 x 273 + 181 (138)

it follows that
2?41 =3 x 273+ 182 (139)

so condition (121) is clearly satisfied. Setting y = 181, we can now use Euclid’s method to
obtain
ged (y + 1, N) = ged (182,273) = 13 (140)

and
ged(y — 1, N) = ged (180,273) = 3 (141)

Since both of these numbers are prime, we can conclude that 13 and 3 are prime factors of
273. Dividing 273 by 39, we easily obtain the third prime factor (which happens to be 7).
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It is interesting to note in this context that choosing x = 2 instead of x = 10 would
provide a different pair of non-trivial factors. In this case, the order of = would be r = 12,
and 2"/ could be expressed as

2" =25 =0 x 273 + 64 (142)
Setting ¥y = 64 would then produce
ged (y + 1, N) = ged (65,273) = 13 (143)

and
ged(y — 1, N) = ged (63,273) =7 (144)

both of which are prime factors of N = 273.
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