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SECTION I:

SPARSE MATRICES



SPARSE MATRICES

A sparse matrix 1s a matrix in which the great majority (typically 98%
or more) of the elements are zeros. Such matrices arise in practically
every engineering discipline.

Sparsity in circuits results from the fact that no matter how large a circuit
is, any given node is connected to only a few other nodes (due to
physical constraints).

Sparsity is a key feature of large scale circuits such as VLSI digital
circuits or electric power networks.

Storage of sparse matrices

For sparse matrices, it 1S necessary to store only the non-zero entries.
This results in enormous memory savings; for example, storing all the
2.5 million entries of a 5,000 x 5,000 matrix would require some 200Mb
(assuming each entry, zero or non-zero, requires 8 bytes).

Storing a sparse matrix requires three vectors, typically denoted B, JB
and IB.

1) Vector B stores all the non-zero values as a string.
2) Vector JB stores column locations of non-zero elements.

3) Vector IB stores a pointer to the start of each row.



EXAMPLE

Consider a 9 x 9 matrix A with twelve non-zero entries:

Diagonal entries : A(l, ) =A12,2)= ... =A9,9) =1
Off-diagonal entries: A(l,6) =4; A(7, 3) =2; A9, 3) = 0.1
Vector B
1 2 3 4 5 6 7 8 9
B=| 14111 1T 1 1 112 11 [ 0.1 1
Vector JB
1 2 3 4 6 7 8 9
JB= 1 6 1 21 31 4151613 7181309

Vector 1B



Recovering information for row 7 of A

Size of row 7: IBB)-IB(7) =2 = row 7 has two
nonzero elements.

Where to find these elements: IB(7) =8 = Starting loction is B(8).
Since there are two nonzeros, they are
in B(8) and B(9) respectively.

Column location: IB(7) =8 = Starting location is JB(8).

Since there are two nonzeros, JB(8) and

JB(9) contain column locations.

Summary of information for row 7

JB(8) =3,JB(9)=7 = A(7, 3)and A(7, 7) are nonzeros in row 7.

B&)=2,BO)=1 = A(7,3)=2and A(7,7) =1.



An alternative storage technique

Data structures can also be used for efficient storage of sparse matrices.

EXAMPLE

10 0 030

0 12 0 O
A =

0 01 1 O

02 0 0 3

10 0.3
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Computation with sparse matrices

Basic computational problem in circuits - solving a large system of linear

algebraic equations

The most popular solution technique for circuit problems is based on LU

factorization.

Solution procedure using LU factorization

1) Rewrite A as A = LU, where L is lower triangular and U is upper

triangular.

2) Solve L z = b for z.

3) Solve U x =z for b.

Ax

b

EXAMPLE (Algorithm 1 for LU factorization)

-
512
A=|1 41
2 25

ull ulZ l/l13
O u22 u23
0 O Us,




STEP 1

Compute the first row of U (using the fact that [, = 1)

Compute the first column of L (using the already computed u,,)

u. =5, = [ =02

= [, =04



Situation after Step 1

1 00 51 2
L=|02 =0 o U=l 0 *x x
0.4 x x 0 0 x

STEP 2

Compute the second row of U (using [,, = 1 as well as the computed
values for u,, and u,;)

+lu, = 06=0Lu, = u,-= 0.6

Compute the second column of L (using the previously computed values
for [;,, u,, and u,,)

u, +l,u, = 1.6=38L, = [, =0421

12 327722



Situation after Step 2

1 0 O 5 1 2
L={02 1 O , U=]10 38 06
0.4 0421 =« | 0 0

STEP 3

Compute the third row of U (using the previously computed values for
L1, Ly, w5 and u,;, as well as [;; = 1)

u, +lou, +l.u, = 39474 =1 _u, = u,, =3.9474

13 32 723 32 7733 327733

FINAL SITUATION

1 0 O 5 1 2
L= 02 1 O ;, U= 0 38 0.6
04 0421 1 0 0 3947 |

COMMENT: This algorithm for LU factorization uses previously
computed elements of L and U when they are needed, not when they
become available.



SAME EXAMPLE (Algorithm 2 for LU factorization)

In this algorithm we make use of previously computed elements of L and
U as soon as they become available.

STEP 1

Exactly the same as in Algorithm 1, resulting in

[ 0 O

11 Uy U, Uy

Ly = 0 ’ *oox
_131 * % | | 0 * |

with [, =1;0,,=02; L, =04 u, =5 u,=1u,=2

STEP 2

a) Form 2 x 2 matrix W,

21 u u ] 21 721 21 713
W - [ 12 13 =

31 31 712 31713

Note that all computed elements of L and U are now used as soon as
they become available.



b) Form 2 x 2 matrix A,

? @

s Ay a,, a23
A, = = -W, =
2 ©) a a
as, 2% 32 33

4 1 0.2 04 3.8 0.6

25 0.4 0.8 1.6 4.2

¢) Perform Step 1 on matrix A,

2 2 2 2
38 =4 =1Puy = u? =38

2 2 2 2
06 =ay =17u? = u? =06

1.6 =a)) =L u? =381, = L =0421

10



Situation after Step 2

1 11 12 13

@
L=|04L L 0O ;U= 0 u? u?

L * L0 0 x

~ 31

STEP 3
a) Form 1 x 1 matrix W,

W, = by - uy, =0.2526

b) Form 1 x 1 matrix A,

A=l al ] =] af |- W, =42 -02526 =3.9474

c) Perform Step 1 on matrix A,

3.9474 --[a;f’}:lff) u? = u? =39474

11



FINAL SITUATION

L, 0 0 Uy Uy U

(2 (2) (2)

L=\1L I 0 ; O uy up
(2) 3 (3)

L Ly L L L 0 0 uy

The matrices L and U are identical to those obtained using Algorithm 1.

COMMENT 1. Algorithm 2 computes L and U by recursively applying

Step 1 to matrices A, A, A,, ..... . In each step the dimension of the
matrix to be factorized 1s reduced by 1.

g




COMMENT 2. When executing Step 1 on matrix A,, its nonzero pattern
is automatically replicated in column k of L and row k of U (since u,,
= ay/ly, and [, = a,,/u,).

COMMENT 3. When A is a structurally symmetric matrix, L and U
have the same nonzero pattern.

COMMENT 4. When A is a symmetric, positive definite matrix, U = L.
This special case is known as Cholesky factorization.

COMMENT S5. For a symmetric matrix A, the nonzero pattern of
matrices L and U can be monitored and predicted without actually
computing these matrices. For example, consider the computation of
matrix W,,,

J

If [, has nonzeros only in rows a, b and ¢ then W,,, will have the
following nine nonzero entries: (a, @), (a, b), (a, ¢); (b, a), (b, b),
(b, ©); (c, a), (c, b), (c, c). These nonzero elements must appear
in A,,, as well.

13



Why is it so important to predict the number and location of
nonzeros in L and U ?

EXAMPLE

Matrix A (structurally symmetric)

*

*

-

o O
o O O

Rk W N =
* %
o O O
*

Matrices L and U (combined for convenience into one matrix)

© o0 0

[ DS T
*

*
© O 0
*

14



COMMENT 1. This example illustrates that even if A is sparse the
corresponding matrices L and U can have many more nonzero elements,
and the initial advantages of sparsity can be lost.

COMMENT 2.The additional nonzero elements that appear in L and U
are referred to as fill-ins, and are denoted by . The location of these
elements can be predicted (but not their numerical value).

Fill-in reduction

When matrices are large, fill-ins represent a critical problem. The amount
of fill-in can be reduced by permuting the original matrix.

EXAMPLE (fill-in reduction by permutation)

If the matrix in the previous example is permuted as

5 3 4 1
5[x000 x|
210 x 0 0 =
310 0 x 0 =
410 0 0 x x
1 Lx * % % % |

there is no fill-in at all!

15



Monitoring fill in by elimination graphs

With any structurally symmetric matrix A we can uniquely associate an
undirected graph G in which vertices i and j are connected if and only
if a; # 0 and a; # 0. In such a graph each vertex represents the
corresponding matrix column, and edges represent nonzero elements.

EXAMPLE
[ % % % x (O |
*x x ) 0 =
*x 0 x 0 0
x () * ()
L0 00 *
Corresponding graph
1
2 o 3
4

o

16



ELIMINATION PROCEDURE. In each step, eliminate a vertex by
removing all edges incident to it. All the neighbors of this vertex must
now be pairwise connected, forming what is known as a cliqgue. This
procedure may require adding new edges to the graph; each such edge
represents a new fill-in element.

Graph after removing vertex 1 (its neighbors are {2, 3, 4})

2 3
T T T Pre
~ -

\\ //
~ ~
~o
4
&
5

New fill-ins in this step: (3, 2); (4, 2); (4, 3)

Matrix A, (4 x 4)

1 2 3 4
1% = « %0 ]
21%x x @ @O x
3|10 xo 0
4 1x 0o 0 x 0
SLO x 0 0 % _

17



Graph after removing vertex 2 (its neighbors are {3, 4, 5})

New fill-ins in this step: (5, 3) and (5, 4).

Matrix A, (3 x 3)

2 3 45
2% % % % |
3 1% *x x @
4 | x x x ©
S5Lx 0 06 x

Graph after removing vertex 3 (its neighbors are {4, 5})

4

New fill-ins in this step: none.

18



Matrix A, (2 x 2)

Graph after removing vertex 4 (its neighbor is {5})

New fill-ins in this step: none.

Matrix A, (1 x 1)

19



FINAL NON-ZERO PATTERN OF L

- —

1 | =

2 | x x
L=3|x o x

4 | 0 0 *

50 *x 0 0 * |

COMMENT. This example illustrates that the non-zero pattern of L and
U can be monitored directly from the elimination graph, bypassing the
explicit construction of matrices A,, A, .... .

EXAMPLE

n

N

20



Graph after removing vertex 1 (its neighbor is {2})

W
A [\
y—y
n

\O

8

New fill-ins in this step: none.

Graph after removing vertex 2 (its neighbor is {4})

|F'S]
\>b
[,

od

9

(@)
o0
~J

New fill-ins in this step: none.



Graph after removing vertex 3 (its neighbors are {4, 6})

New fill-ins in this step: (6, 4).

Graph after removing vertex 4 (its neighbors are {5, 6})

New fill-ins in this step: (6, 5).
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Graph after removing vertex 5 (its neighbor is {6})

New fill-ins in this step: none.

Graph after removing vertex 6 (its neighbor is {7})

o0
O

Graph after removing vertex 7 (its neighbors are {8, 9})

New fill-ins in this step: (9, 8).

23



Graph after removing vertex 8 (its neighbor is {9})

o

TOTAL FILL-IN IN L: (6, 4); (6, 5) and (9, 8)

Use of cliques for storage enhancement

Whenever a fill-in occurs, the non-zero pattern changes and an additional
element needs to be stored. In general, the added storage requirements
can be very significant.

EXAMPLE

Suppose that we want to remove vertex k from the elimination graph
below (k has neighbors {i, j, [, m})

o

o3

24



New fill-in elements are (i, j); (i, m); (i, ) and (I, m). The data structure

from the previous step is substantially enlarged (added elements are
shaded)

Y
W

k —m— 1 | ] I ! m ; }CLIQUE

We know that the elimination of vertex k creates a clique {k, i, j, [, m},
which all become pairwise connected. Therefore, instead of adding them
to the data structure, we can replace the whole clique by - k (so-called
storage by reference)

k1] |1 m%}CLIQUE

This can result in a major reduction in storage space.

25



Algorithms for minimizing fill-in

Minimizing the amount of fill-in is a very difficult problem (so-called
NP-complete). As a result, all algorithms of this type are heuristic.

MINIMAL DEGREE ORDERING

A very effective general purpose algorithm, which is included in
practically all sparse matrix software packages.

PROCEDURE. Form the elimination graph, but do not eliminate
vertices in sequence. Instead, in each step eliminate the vertex with the
minimal degree in the graph.

EXAMPLE

1 2 3 4 5 6 7 8
1[*« x = x 0 0 0 0 |
21 = 0 0 0 0 0 O
31 0 x 0 x x 0 O
41« 0 0 = 0 0 0 O
510 0 = 0 x 0 =x O
610 0 = 0 0 = 0 O
710 O 0 = * %
8LO O 0 O koK

26



Graph G

[Un.
N

(O8]
(@)

WITHOUT ORDERING

Graph after removing vertex 1 (its neighbors are {2, 3, 4})

8
New fill-ins in this step: (3, 2), (4, 2), (4, 3).

27



Graph after removing vertex 2 (its neighbors are {3, 4})

Y (o

4 6

N
>

Graph after removing vertex 3 (its neighbors are {4, 5, 6})

New fill-ins in this step: none.

o0

New fill-ins in this step: (5, 4), (6, 4), (6, 5).

28



Graph after removing vertex 4 (its neighbors are {5, 6})

6

8
New fill-ins in this step: none.

Graph after removing vertex 5 (its neighbors are {6, 7})

6

o —— e — O

g

New fill-ins in this step: (7, 6).
Graph after removing vertex 6 (its neighbor is {7})

7

8
New fill-ins in this step: none.

29



THE FINAL NONZERO STRUCTURE IN L AND U (14 fill-ins)

o O

*
© ©0
*
*

S O O O

*
©
*
©
© O
*

S O O & O O o™

oo~ N R LN -
o O O O
S O o O 00 0

*

S O 0 0
*
*
*

WITH MINIMAL DEGREE ORDERING

Graph G
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Graph after removing vertex 2 (its neighbor is {1})

1

|

| ; :
|

4

5
7
8

New fill-ins in this step: none.

Graph after removing vertex 4 (its neighbor is {1})

1
\%—_ﬁ
6
|
5>
8

New fill-ins in this step: none.



Graph after removing vertex 6 (its neighbor is {3})

1

oo

New fill-ins in this step: none.

Graph after removing vertex 1 (its neighbor is {3})

New fill-ins in this step: none.
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Graph after removing vertex 3 (its neighbor is {5})

5

oo

New fill-ins in this step: none.

Graph after removing vertex 5 (its neighbor is {7})

7

8
New fill-ins in this step: none.

THE FINAL NONZERO STRUCTURE IN L AND U (no fill-ins)

2 6 1 3 5 7 8
2 [ 0« 0 0 0 0 |
410 x 0 = 0 0 0 O
6/ 0 0 x 0 x 0 0 O
I » 0 x x 0 0 0
310 0 x *x x x 0 0
S10 0 0 0 x % x 0
710 0 0 O *x ok %
8LO O 0O O 0 0 =*x x |




COMMENT 1. Minimal degree is very effective in reducing the amount
of fill-in. However, the reordered matrix lacks structure, and it can be
difficult to implement LU factorization in a multiprocessor environment.

COMMENT 2. When several vertices in the elimination graph have the
same degree, how do we decide which is the next to be eliminated?
Different tie-breaking criteria give rise to different variations of the
minimal degree ordering. A good tie-breaking scheme can further reduce
the amount of fill-in.

THE BORDERED BLOCK DIAGONAL STRUCTURE

This type of matrix structure is well suited for parallel processing. The
typical format is

34



There are many algorithms that attempt to achieve this structure and
simultaneously minimize the amount of fill-in.

Nested Dissection

Very successful for matrices that already have some regularity in their
structure. However, much less successful in matrices with irregular
patterns (such as those arising in circuits).

SOME PRELIMINARY DEFINITIONS

DEFINITION. The eccentricity of vertex x in a graph, denoted /(x), is the
maximal distance from x to any other vertex in the graph

[(x) =max d(x,y)

yeG

DEFINITION. The diameter of graph G, denoted d(G), is the maximal
distance between any two vertices in G

3 (G)= max I(x)

xeG

DEFINITION. Vertex x is said to be a peripheral vertex in graph G if
I(x) = 8(G). A vertex that is nearly peripheral will be referred to as a
pseudo-periferal vertex.

35



PROCEDURE

(i) Find a pseudo-peripheral vertex, and generate the corresponding
rooted level structure.

(ii) Identify the middle level in this structure. All the vertices in this level
set now become candidates for a separator, whose removal will break up
the graph into two disconnected components. It is actually necessary to
remove only vertices that are connected to the next level, so the separator
is normally smaller than the middle level set.

(iii) After removing the separator, repeat the first two steps on the

remaining components of the graph until some assigned criterion is
satisfied.

EXAMPLE

Consider the following graph

X2 X3 X4 X8
X1 X5 X7
X6

Our first step will be to find a pseudo-peripheral vertex.

36



Selecting vertex x; as the root, we obtain the following rooted level
structure

—®»  Jevel(

2 X5 ) — ™ Levell

A8 X6 ) —®  Level 2

Since there are only two levels, select the vertex from the last level with
the smallest degree (in this case, x, is such a vertex).

@ —®  Level O
@ —»  Jevel |

< X3 X5 ) — >  Level 2
(x4 X6 X3 ) —— Level3

—® Jeveld

37



Repeating the procedure in this case will not increase the number of
levels. Therefore x, is a pseudo-peripheral node, and {x;, x5} represent
the minimal separator. The resulting BBD structure is

COMMENT 1. This example illustrates that the separator in fact
represents the border of the BBD matrix.

COMMENT 2. A common approach to reducing fill-in has been to
minimize the size of the border. By this criterion, nested dissection does
well for regular matrices, such as the one corresponding to the graph
below

2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

38



EXAMPLE

Consider the following irregular graph

4 8 12 20

The level structure rooted at vertex 1 is

— JLevel 0

23 — Jevell

C 4567 ) — Level2

(89 10 11 )  — Level3

Ci2 13 14 15)  —> Leveld

@ —»  Level 5

Ci17 18 19 20)  —> Level6

62 2‘1\' — >  Level7

— Jevel &

39



Following the nested dissection algorithm, the minimal separator is the
set {12, 13, 14, 15}. However, by inspection it follows that {16} is a
much better choice. Consequently, in this case nested dissection does not
to too well.

Decompositions based on eigenvectors of graphs

DEFINITION. Let G be an undirected graph, in which V and E denote
the set of vertices and edges, respectively. The adjacency matrix A is

then defined by: a; = 1 if (i, j) € E and a; = 0 otherwise. By definition,
a; =0, Vi.

DEFINITION. Let d(v) denote the degree of vertex v, and define a
diagonal matrix

D =diag{d(1),d?2),...,dn)}

The matrix Q defined as Q = D - A will now be referred to as the
Laplacian matrix of graph G.

COMMENT. Matrix Q is always positive semi-definite, with at least one
zero eigenvalue. The smallest positive eigenvalue of Q is denoted A,, and
the corresponding eigenvector is denoted by X,.

40



PROCEDURE

(1) Compute eigenvector X,, and determine its median component x,.

(if) Partition the vertices of the graph in the following way: for any
vertex i, if x; < x;, seti € A; otherwise, i € B. In this way, the vertices of
G will be partitioned into two approximately equal sets, A and B.

(iii) All the edges connecting sets A and B now constitute an edge
separator H. The objective now is to find a minimal vertex cover for H
(that is, the minimal number of vertices that need to be removed so that
all edges € H are removed). This vertex cover constitutes the separator.

(iv) Repeat steps (i) - (iii) on the remaining components after the
separator is removed.

COMMENT. This algorithm performs well for both regular and irregular
matrix structures. However, that for large matrices computing the second
eigenvector can be very difficult, if not impossible .

Balanced BBD decompositions

This is an algorithm that we developed at Santa Clara University. It is
primarily designed for parallel computation, and has several features that
give it an advantage over algorithms such as nested dissection or graph
eigenvectors.

41



The algorithm is recursive and has two basic steps.

STEP 1. Select a maximal allowable block size Nmax. Given this choice,
move as many vertices as necessary to the border so that each block has
size < Nmax. A typical situation after this step is

%%7
_

-

%

STEP 2. The border is obviously too large after the first step;
consequently, in step 2 we reconnect border vertices one by one. In this
process, the next vertex to be reconnected is always the one that results
in the smallest increase in block sizes (we call this a "greedy" algorithm).
The process continues as long as we have at least two blocks left (in
other words, we will stop when we see that the next reconnection will
result in a single block).

Once we have two blocks and an initial border, steps 1 and 2 are
repeated on each block (this makes the algorithm nested). The local
borders are then moved and "attached" to the initial border. We continue
with this procedure recursively until the border and all the diagonal
blocks are approximately the same size (i. e. "balanced").

42



A typical structure resulting from this decomposition is shown below.

. |

%
%
%Z
7
%
o

Note also that the border will have an internal structure, which is
preserved in the process of LU factorization.

% 7 7 7.
D
%%7/
-
| 7 7/
% /
% %
'z %/
////
7 %77
| )%
7 7 57,
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ADVANTAGES OF BALANCED BBD DECOMPOSITION

1) All diagonal blocks are of similar size. As a result, in parallel
computations the work load is well balanced accross the processors (this
is of fundamental importance).

2) The algorithm is numerically simple and fast, because we only care
about the size of a block and not its contents (unlike minimal degree and
other orderings). In very large matrices, our algorithm is typically 4 times
faster than the minimal degree ordering.

3) The amount of fill in is similar as in the case of minimal degree
ordering. However, unlike minimal degree, we also get a structure that
is perfectly suited for parallel computing.

4) The balanced BBD decomposition works well for all types of
matrices. This is unlike nested dissection, which gives good results for
regular structures but does poorly for irregular matrices (such as those
arising in circuits).
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Model of an off-shore generator platform (28,924 x 28,925)

47



T

8|5 1 ] I

| o5

0 0.5 1 15 2 2.5 3 3.5

nz = 1181416 4
X 10

Model of an automobile steering component (35,588 x 35,588)
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Matrix Number of Ordering time
size NONZeros Min. deg. (Tm) BBD (Tb) Tm/Tb
2,003 83,883 14.47 s 1.86 s 7.78
8,738 591,904 101.93 s 91.79 s 1.11
10,974 428,650 120.69 s 31.79 s 3.8
11,948 149,090 38.26 s 42.87 s 0.89
13,992 619,488 129.08 s 67.23 s 1.92
28,924 2,043,492 1,1182 s 287.15 s 3.9
35,588 1,181,416 434.02 s 105.54 s 4.11
44,609 2,104,701 1,0319 s 24192 s 4.26
90,000 806,404 33.31s 31.08 s 1.07
250,000 2,244,004 96.29 s 47 s 2.05

Table 1. A comparison of execution times for symmetric minimal degree and
BBD orderings.
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Matrix Number of Nonzeros in L and L"
size NONZeros Min. deg. (Nm) BBD (Nb) Nm/Nb
1,005 8,621 41,555 36,801 1.13
1,074 12,960 72,426 74,494 0.97
1,084 3,966 6,426 6,786 0.95
1,143 18,552 23,452 22,022 1.06
1,806 63,454 238,868 258,304 0.92
1,993 7,443 13,439 14,259 0.94
2,003 83,883 588,887 568,545 1.04
3,466 23,896 186,348 180,680 1.03
4,884 290,365 1,858,419 1,781,747 1.04
5,300 21,842 52,800 62,350 0.85
8,738 591,904 6,745,812 7,730,880 0.87
13,992 619,488 3,697,688 4,156,246 0.89

Table 2. A fill-in comparison of symmetric minimal degree and BBD orderings.
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SECTION II:

AC ANALYSIS



KCL equations

=i +i, +i, =0

1 |+ =
i +i, +i =0

Using node voltages

v V -V
—Ig1+_1_+ ! 2=O
R, R,

vV, -V, V,
_ - +?+Ig2=0
2 3

Grouping the terms
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In matrix form

GENERAL FORMAT:

Stamps for circuit elements

CONTRIBUTION OF A RESISTOR

_1
RZ VI
|%
11 ?
—_—
R2 R3
Gx-w=0
R
IR
V _
+l'R: ARVB
. VA+VB
-i = - .
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In nodal equations, the resistor appears in matrix G as

S
o

| -~ x| -
| = x| -

This contribution is referred to as the stamp corresponding to resistor R.

CONTRIBUTION OF AN INDEPENDENT CURRENT SOURCE




EXAMPLE 1 (redone using stamps)

Stamps for resistors (contribution to G only):

2| — 2| — o=

o - <



Stamps for current sources (contribution to w only)

: -
0 -, o [181}
1 I,
2 | -1, ~ [—Igz}
0| 1,

5 _

_ V1 Vz -
i 1 N 1 B 1 i v | i
Rl Rz Rz : :
2 —l.. __1__ + __1_ V2 2
] R2 R2 R3 1 - - =

This 1s exactly what we had before.
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EXAMPLE 2

|

Graph

KCL equations

IR
,+i. —I, 0
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In this example we have a voltage source, and we can not express i, in
terms of node voltages. Therefore, we will need an extra equation (so-
called compensating equation).

V. -V
i+ _2=0
a Rl
—VI_V2+E—18=O
Rl R2
Vi-V, =0
In matrix form
_Vl V2 ia_
1 1 1 1 - -
R, R, Vi 1|0
S D S O N N P (A N O (A A
Rl Rl RZ
i CoM v,
coM | 1 0 o] -
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GENERAL FORMAT: G x - w = 0 is still valid, but x additionally
contains current i,.

CONTRIBUTION OF AN INDEPENDENT VOLTAGE SOURCE

®
%

A: ... +i
B:...-i

COM: V, -V, -V =0

In nodal equations, the voltage source appears both in G and in w

vV, V, i
_ e - .
A 0 0 1 v, 1 0
B 0o 0 -l v, | 2 0
coMm| 1 -1 0| |; | CoM|V |
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EXAMPLE 2 (redone using stamps)

Stamps for resistors (contribution to G only):

Vl V2

1 1

R R, R,

N

| R, R,

V2
R,: 2|1
R

I : :2{1]

8
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Stamp for voltage source (contribution to both G and w)

v, vV, i
1 0 0 1 1 0
V:
8 0 0 0 -1 ’ 0 0
CoM | 1 -1 0 | COM | Vg_
which becomes
— VI ! - _ -
1 1 0
V. I
g -
CoM 1 0 COM Vg

Combining all the stamps we obtain exactly the same result as before.
From this point on, we will write our equations using stamps only.
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CONTRIBUTION OF AN OPERATIONAL AMPLIFIER

@c 2 - jﬁ o@
B o+
Iy
A +i =0 C +i
B +1, =0 COM: vV, -V, =

A B c L
4 | o 0 o o | [ V]
B O 0 0 0 v,
C o 0 0 1 V.

com | 1 -l 0 0| | |
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EXAMPLE 3

Vv, A
1 : -
Rll R1 1
| L
| R R ]
Vv, v, )
1 1 i€
5 b
R2 RZ R2 ; R3 3 "1—
o A
| R, R, |
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Stamp for the op-amp (contribution to G only)

VA VB VC l 1
_ - v,
A O 0 0 0 -
2 0
B O 0 0 0
=3 0
C o 0 0 1
comM 1| 1
comi| 1 -1 0 0]

VA VB i2
] - - -
A o 0 1 Al O
B 0o 0 -l ’ B |0
coM2 | 1 -1 0 | LV, |
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This becomes

COM 2

CoMm 1

COM 2

69

COM 2




1 — 0 —
2 0
W= 3 0
coM 1| 0
com2| v

CONTRIBUTION OF VOLTAGE-CONTROLLED SOURCES

General format

©Q
)

O =5 e
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It will be convenient to think of a voltage-controlled source as a two-port

e
D : w
& e .

C
Voltage-controlled current source
Ao o 1=0 o C
+
\V/ Y oV
B o © 1=0 °D

71



Stamp for voltage-controlled current source

_ VA VB VC VD -
A 0O 0 0 O
B 0O 0 0 O
Cl a - 0 0
D{-0 o 0 0
Voltage-controlled voltage source
1
o o A l X o (C
+ |
+
\Y% o/ BV
- |
o o B ! ° D
A =0 C I
B 1=0 D -1

COM: V.-V, -B(V,~V,) =0
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Stamp for voltage-controlled voltage source

<

©o o o o X

S a % >
= o © o o <

- o O O O

coM | B

CONTRIBUTION OF CURRENT-CONTROLLED SOURCES

General format
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It will be convenient to think of a current-controlled source as a two-port

C
o— AVAVAVAVAY 0 I
% |
% ;A § \ (Xix
iX
—0 JVL
B D
Current-controlled current source
A o | o (C
|
|
Be f < D
A ... +] C...pui
B -1 D ... -ui
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Stamp for current-controlled current source

_ VA VB VC VD ix _
A O 0 O 0 1
B O O 0 0 -1
C 0O 0 0 0 up
D 0O 0 0 0 -u
coM |1 -1 0 0 0 |
Current-controlled voltage source
i
Ao —<4—o (C
* il j V14
i
Be | ° D
A +1 C L
B -1 D ... -i

COM1:V, -V, =0
COM?2: V.-V, -vi =0
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Stamp for current-controlled voltage source

a % >

COM 1
COM 2

EXAMPLE 4

S = o o © o X
© o o o N

1 <‘> R,

Hoooootﬁ

VD il
0 1
0 -1
0
0
0
-1 -v

i,
[\

—_— = O O

o O
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Stamps for resistors (contribution to G only):

Vl
R: 1|1
Rl
Vl V2
| | 1 1 | v,
R, R, K, ; R,: 2 i
2 1 1 R,
. R, R, |

Stamp for current source (contribution to w only)
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Stamp for voltage-controlled current source (contribution to G only)

v, Vv, V.V
_Ta B 'c "D _ v, v,
A 0 0 0 O |
0O O
B O 0 0 O
=
C|l oa - 0 O
2| -0 O
D B - 10 O 0 ] - N
Combining all the stamp contributions
1 1 \ 1 [ l ]
1 — t— T v, 1] 1
Rl 2 R2 §
_ = 0
2 1 11 v, 210
-— - a - + —_— - - - -
" RZ 2 R3 i
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EXAMPLE 5

Vl
R: 1 __L
Rl
V1 V2 V3 V4
. 7
R,: R, R, : R, R, K
2 | -2 : 4| — :
| R, R, | L R, Ry
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Stamp for current source (contribution to w only)

V., V. i
A — 0 0 1 - r 0 -
B 0 0 -1 ’ 0
comM 1| 1 -1 0 | V. ]
) v, I -~ _
4 0 1 4 0
COoM 1 1 0 / COoM 1 ] vV, ]
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Stamp for voltage-controlled voltage source (contribution to G only)

7 S A Vi Vs
A 0 0 0 0 0 [
B 0 0 0 0 0 : 00
C 0 0 0 0 I
D 0 0 0 0 -l N ? o0
coM2 | g B 1 -1 0] coM2 | p 1

Stamp for current-controlled current source (contribution to G only)

— V2 V3 Vl V4 i3 -

2 O 0 0 0 1

3 O 0 0 0 -1

i 0 0 0 0 u

4 0O 0 0 0 -u
COM3| 1 -1 0 0 0.
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Combining all the stamps, matrix G will be:

1 2 3 4
: 1 1 1
— -—— 0 0
Rl R2 RZ
2 1 LI 0
R, R,
3 0 0 L1
R, R
4 0 o -L 1
R, R
COM 1 0 0 0 1
COM 2 -B 1 0 0

COM 3 0 ] | 0
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and vector w will be
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AC ANALYSIS OF LINEAR CIRCUITS

In AC analysis we use phasors, so inductors and capacitors can be easily
incorporated. The stamps for these elements are provided below.

Capacitors

A..+I=joC(V,-V,)

=
B..-I=-joC(V,-V,)
Inductors
A +l=—2 (v -v)
JoL

1
B.. -I=-_—_(V -V
ij( 2~ Vs)
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The general equation format now becomes

G+j0)C+_l_L X =w
J

where C and L are matrices corresponing to capacitors and inductors.
Basically, this is the same format as before, only the matrix elements are
complex numbers.

Application to Filters

An important application of AC analysis is in the design of filters.

EXAMPLE

The circuit below represents a passive low pass filter.

Ly
— AAMA——
1 Ql 2 H 3
e i
o +

C1:: C3 —— RL \/0
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Stamps for resistors (contribution to G only):

1 2
1 1
1 _ ——
R1 Rl Rl
| - L L
. R, R, |
A
R, : 3 __1_
R

Stamp for voltage source (contribution to both G and w)

_ 1 4 o — -
1
V 0 I : 0
g -
4 1 0 4 Vg
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Stamps for capacitors (contribution to C only):

x2
C: 2 [ c }
C2: 2 Cz _C2
3 | ~C2 Cz |
x3
c: 3 [ c, ]

L, : 2 L hy
3 | _LI Ll A
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Combining all the stamp contributions

G = | -
X
—O
L = 0
0
. O
X
0
C = 0
0
_O

X, Xy Xy
L
1
L9 o
R,
0o L 0
RL
0 0 0 J
2 Xy X )
0 0 0
1 Bl 0
- L1 L1 0
0
X, Xy
0 0
(C1 + Cz) B Cz
B Cz (Cz + C3)
0 0

88
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By solving equation

G+ij+J_L X =w
JO

for different values of ®, we can obtain the frequency response of this
circuit (both magnitude and phase, since x is complex).

EXAMPLE

The circuit below represents a active band pass filter.
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Stamps for resistors (contribution to G only):

Xl x2
N
R : R, |
| w ®
)C3 x4
o ]
R,: R, R,
S 1
| R, R, |

Stamp for voltage source (contribution to both G and w)

_ xl xS - — —
1
V. 0 I : 0
g .
5 1 0 5 Vg
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Stamps for capacitors (contribution to C only):

M 3
2 C1 —C1
C,:
3 i _Cl C1 a
C,: 2 % G
4 i _Cz Cz i

OA: 410 0 1
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In this case L = 0, so the equations have the form

[G +jmc]x = W

Again, we can solve it for different values of o and obtain the frequency
response.

EXAMPLE

This circuit is an active low pass filter.
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Stamps for resistors (contribution to G only):

e

2| —

IS

>\J|._;

~

W



Stamp for voltage source (contribution to both G and w)

T - S
1 110
v 0 1
g .
6 1 0 6 Vg

Stamps for capacitors (contribution to C only):

x3
c: 3 [ c }
sz 2 C2 —C2
5 | _Cz Cz i
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Stamp for op amp (contribution to G only)

OA:

Application to Linear Amplifiers

AC analysis can be used to evaluate the frequency response of linear
amplifiers. We illustrate this process by considering the common emitter
amplifier; in doing so, we will use the following small signal transistor

model

“

)

C
i
I
|

B ‘ i

Fu o= (e e




EXAMPLE

The common emitter amplifier circuit is shown below.

I Ve
R
R).(j§
L\/CE
o I °
. .
- | |
Sy 2
I g R,
. 4
“( .
Re 1 C¢

In this circuit, the element values are:

R, = 8K; R, = 4K; R = 6K; R = 3.3K; R, = 8K; C, = C, = 1uF;

C, = 10pF; Ve = 12V,

The parameters of the small signal model can be obtained from a DC
analysis as:

g, = 36 mA/V; 1, = 2.6K; r, = 103K; C, = 17pF; C, = 2.5pF.
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The linearized circuit that we will
below.

{h

use for an AC analysis is shown

ok

COMMENT 1: At low frequencies the gain will be affected by coupling
capacitors C.,, Cs, and Cg, while the high frequency behavior is
determined by the internal capacitances of the transistor (C, and C).

COMMENT 2: For intermediate frequencies (i. e. in the kHz range),
coupling capacitors can be approximated by short circuits, and the
internal capacitances can be disregarded. The resulting simplified model

becomes
Rs
e AAAN
+
\/g Ci} R, Re " Vi
4
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From this model we can easily determine the gain as

RA .
R +R §

A N

Vo= -8, Ry

where R, =R, I R, lIr, and R; =R, I R, Il r, . Obviously, in this range
the gain is independent of the frequency, and the characteristic is "flat".

To perform a complete AC simulation, we need to consider all the
capacitors. The individual element stamps are shown below.

Stamps for resistors (contribution to G only):

X X
1 2
1 1 Xy
N
R;: S § ’ R: 3 i
) 1 1 R,
| R, R, |
X, X,
g g
rn ' I”n r“ ’ R2 . 3 i
4 -_1_ __1_ K, .
I = F. A
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X, X,
1 1 X,
4 J— [ —
r, Yo Yo X R, 4 [i}
R
s - L 1 E
L7 Ty
Xs
R.: 5 _1_
RC
X
r

R, : 6 _1_
RL

Stamp for controlled source (contribution to G only):

X4 X5
8-
S| 8 8 |
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Stamp for voltage source (contribution to both G and w)

NN - .
1 110
v 0 1
g .
71 1 0 TV,

Stamps for capacitors (contribution to C only):

I Y I
3 Crc -C 3 C
C. T : C,: "
4 - -C, C. | 5 | -C,
N X
C. - 2 CCI —CCI ) Y4
SIS
3 | _CCI CCI i
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c2°

101



SECTION III:

DC ANALYSIS



NONLINEAR ALGEBRAIC EQUATIONS

The simplest example of a nonlinear equation is a quadratic equation,
such as

f(x)=x*+4x+3=0

One feature that we can immediately observe is that nonlinear equations
can have multiple solutions, even if there is only one variable. In
contrast, systems of linear equations will have a unique solution
whenever the matrix is non-singular.

Newton’s Method

We will first consider nonlinear equations in one variable. The general
form of these equations is

f(x) =0

and they can be solved by Newton’s iterative method

x(k+1) = x(k) = [/ (x@))] " fx®)

You begin from some initial guess x(0), and then generate a sequence of
points using the formula above. Specifically,

102



x(1) = x(0) - [/ (xO)] " f(x(0))

x(2) = x(1) = [f' )| fm)

and so on, until the sequence converges to a solution.

EXAMPLE

For the quadratic equation that was considered on the previous page,
Newton’s method will be

-1

x(k+1) = x(k) - [2x(k) +4

(02 + 4x(k) +3
The solution that we obtain will depend on the initial guess.
Case 1

If we choose x(0) = 0, we obtain the following sequence:
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x(1) =-0.75
x(2) =-0.975
x(3) = - 0.99695

x(4) = - 0.99999

Obviously, from this initial condition the method converges to x* = -1
after 4 iterations.

Case 2

If we choose x(0) = -5, we obtain a different sequence:

x(1) = - 3.67
x(2) =-3.133
x(3) = - 3.00734
x(4) = - 3.00003

x(5)=-3

In this case, Newton’s method converges to x* = -3 after 5 iterations.
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COMMENT. We can conclude from this example that the solution
process depends heavily on the choice of x(0). When the equation has
multiple solutions, different initial approximations will lead to very
different solutions.

EXAMPLE

This example is intended to further illustrate the importance of the inital
approximation. Let us consider the following nonlinear equation

X

f(x)=x3-x*-6x-2-e*+5e? =10

A plot of this function is shown below, indicating that the equation has
four different solutions.

-20 : ; L L ; j
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In this case we have

x (k)

f(x(k)) =xk)? - x(k)> -6x(k) -2 - e ™ + 5¢ 2

and

x (k)

FI(x(k)) = 3x(k)% - 2x(k) - 6 — e*® 4 _25_e 2

Case 1

For x(0) = 0, Newton’s method converges to x* = 0.4250802 after 3
iterations.

Case 2

For x(0) = 2, Newton’s method converges to x* = 4.4641297 after 6

iterations.

Case 3

For x(0) = - 1, Newton’s method converges to x* = -1.9720659 after 13
iterations.

Case 4

For x(0) = 3, Newton’s method converges to x* = 2.94683037 after 3
iterations.
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COMMENT. It should be observed that the choice of x(0) determines
not only which solution we will obtain, but also how many iterations it
will take. In fact, in circuit applications a poor initial approximation can
often result in no convergence at all. This will prove to be a major
obstacle.

A Geometric Interpretation of Newton’s Method

Now that we know the mechanics of Newton’s method, let us consider
what makes it work.

f(x) A

tanoc=f’<x(0)>=f(’;(0” = f1(x(0)) (x(0) —x(1) =f(x(0)) =

X

= f(x(0)) (x(1) -x(0)) = -f(x(0))
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Similarly

) (x(1) -x@2)) =f(x(1)) = f(x(D)) (x(2) -x(1)) = -f(x(1))

etc. This obviously corresponds to Newton’s iterative scheme.

Extensions to Systems of Nonlinear Equations

So far we considered only nonlinear equation in one variable. What if we
have something like

() {fl(xl,X):I 0
L U

W) =
fz(’xl’ 2

To generalize Newton’s method to this kind of problem, we first need to
recall the Taylor series expansion of such a function around some x° :

_afl afl -

£(x,5 %) £(x°, %) 9x, ox, |[Ax,

f2(x1’ 2 — fz(xloa xzo) afz afz sz
5 o,
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The term

afl afl
dx, 0x,
T =100 o
2 2
dx, ox,

plays the role of derivative at x°, and is referred to as the Jacobian of

function F. Consequently, for this type of equation we can use the
Jacobian in place of the derivative in Newton’s method. The actual

iterative scheme is given as

x(k+1) = xk) - [J(x(k)]" F(x(k))

COMMENT. Note that now x(k + 1), x(k) and F(x(k)) are 2 x 1 vectors,
and J(x(k)) is a 2 X 2 matrix.

In the general case, we have a system of n nonlinear equations

filx,,....x)
F(x) =1: = (0

—
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and the Jacobian J(x(k)) will be an n X n matrix

[ OF,  OF, |
P r
J(x(k)) =
OF  OF,
Er

When the system is large, inverting such a matrix is highly undesirable.
This problem can be avoided by rewriting each Newton iteration as a
system of sparse linear equations

J(x(k))Ax =-F (x(k))

where

Ax = x(k+1) -x(k)

Such a system can be solved using the standard sparse matrix techniques
discussed earlier (even when the number of equations is large). Note
however, that J(x(k)) and F(x(k)) change in each iteration, so in general
it is necessary to solve several different linear equations before
convergence is achieved.
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EXAMPLE

Let us consider the system of equations

-2 X
3x,x, —x, —e”
F(x)s{ ) }=O

X, X, - COSX, - X,

The Jacobian in Newton’s method is

3x,(k) - e 3x,(k) +2 x, (k)" }

J(x(k)) = [ o
2 x,(k) x,(k) + sin x,(k) x,(k)* -1

As before, the obtained solution will depend on the choice of x(0).

Case 1

The initial choice x,(0) = 1; x,(0) = 1 produces solution x,* = 1.1616685;
x,* = 1.1383094 after 4 iterations.

Case 2
The 1initial choice x,(0) = 0; x,(0) = 2 produces solution x,* = - 0.43276;

x,* = - 1.117006295 after 5 iterations.
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EXAMPLE

Let us now look at another system of nonlinear equations

x + 2logx, - x,
F(x) = ; =0
3x,x, - x,e”

In this case, the Jacobian in Newton’s method is

~
~
>
—~
aﬂ
N’

5x14(k) + 2x1(k)—1 - -I
) ) 71
3 x,(k) 3x,(k) - PRGN x2(k)ex2“‘) J

and the obtained solution again depends on the choice of x(0).

Case 1

The 1nitial choice x,(0) = 1; x,(0) = 1 produces solution x,* = 1.0160218;
x,* = 1.1145071 after 5 iterations.

Case 2

The initial choice x,(0) = 5; x,(0) = - 1 produces solution x,* = 0.82554;

x,* = 0 after 12 iterations.
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DC ANALYSIS OF NONLINEAR CIRCUITS

In any DC analysis, it is assumed that all capacitors are open circuits,
and that inductors are short circuits.

As we saw earlier, if the circuit is linear, the equations that describe it
have the general form

Gx -w=0

When the circuit has one or more nonlinear elements, the format
becomes

Gx+px)-w=0

where p(x) is a nonlinear function.
Nonlinear resistors

A nonlinear resistor is a device where the current and voltage are not
related by Ohm’s law, but rather by some nonlinear function g:

®

o—p—ANNN—0
1=g(v)
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The stamp for such a device is

Ari=gV=Vy) Al gV, -V,

B... -i=-g(V,-V,) Bl -g(V,-Vp)

which implies that it contributes to p(x) only.

EXAMPLE

A typical example of a nonlinear resistor is a diode. The following circuit
illustrates how a diode affects the equation format.

: < >

; INNN

i
i
i

\/g /3\ T ™

K\ ' /‘; \ ;.J‘

NS

14



Stamp for resistor (contribution to G only):

Ra
=

[\

]

|- x| -

x| - x| -

Stamp for voltage source (contribution to both G and w)

- xl x3 - —- -
Lo 1 110
311 0 3|V,
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Combining all the stamps we obtain

_ xl x2 x3 _ _
o o
0
T X, 1l o
R R
1 1 + 5
2 _i- ﬁ 0 x2 IS(e VT _1) — 2 O = 0
3 . 3| v
L 1 0 0 1l b 3. L 0 i L ¢

Obviously, these equations conform to the general format for nonlinear
circuits.

EXAMPLE

In the following circuit, we consider a resistor with a quadratic type of

nonlinearity, defined as i = g(v) = 3v2,

g(v)
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Stamps for resistors (contribution to G only):

X, X3
R: 2|LY | » r: 3| L
R R
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Stamp for the nonlinear resistor (contribution to p(x) only):

1 3(x, - x,)°
31 -3(x,-x)?

Overall, we obtain

.xl X2 X3 X4 x5
[0 0 0 o 1 |
0 ! 0 0 -1

Rl
G =
0 0 L o &
RZ

0 0 0 0 0

1 - 0 0 0
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—3(x1—x3)2 T " Ig-

0 0

p(x) = [-3(x;-x)? : w =10
0 0

0 0

and the equations again have the form

Gx+px)-w=0

DC Analysis of Circuits With Diodes

Since the DC behavior of nonlinear circuits is described by a system of
nonlinear algebraic equations, we can always use Newton’s method to
obtain a solution. In doing so, one of the most difficult problems is to
find a good initial approximation (otherwise the iterative process may not

converge at all).
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In circuits where diodes are the only nonlinear elements, a good initial
approximation can be obtained through an approximate analysis of the
circuit. In such an analysis, we assume that a conducting diode has a
voltage drop V = 0.7V, regardless of the current.

EXAMPLE

In this example we illustrate all the different stages of a DC analysis. Let
us consider the circuit below, where V, = 5V, R = 1K and I = 10 1A,

)]

! <
VAVAVAVA

RV

a) Circuit Equations

Stamps for resistors (contribution to G only)

o

| =
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Stamp for voltage source (contribution to both G and w)

— xl )C3 - - -
1 0 1 110
31 1 0 3 vV,

_ xl x2 x3 _ _
[ ] 0
' L X,
R R
1 2 + 5
2 _—R— E O x2 Is(evr_l)
3
1 o o | LKB1 | g |
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b) Setting up Newton’s Method

For the purposes of Newton’s method, the circuit equations can be
rewritten as

1 1
ﬁxl - Exz + X,
fi(x)5 x,, x)
F(x) = | f,(x.%,x) | = -
(x) 2\ Ao A —lx1+2-x2+ls(evr—1)
| fi(x, Xy, x) R R
L xl B Vg _
The Jacobian is then easily computed as
X, X, X,
1 1 1
R R
J(x(k)) = R
—i __2__ + S e ¥ 0
R RV,
L1 0 0 A
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We should point out that this Jacobian can actually be expressed as

J(x(k)) = G + _aB
ox

In other words, it consists of a constant part, G, and the term dp/ox
(which represents the Jacobian of p(x)).

The term dp/dx can be formed from the individual stamps of each
nonlinear element in the circuit. For example, in this circuit we have a
diode current I;(x,) contributing to equation f,(x); since this current
depends only on x,, it will contribute a term 9dI,/dx, to element J(2, 2) of
the overall Jacobian.

¢) Obtaining a Good Initial Approximation

To get a good initial approximation, we first need to perform a simplified
analysis of the circuit.

ASSUME DIODE IS OFF

AJ
n
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In this case it follows that V; = 2.5 V, which is clearly a contradiction
(a diode voltage should not exceed +0.7V under any circumstances).
Consequently, we conclude that this assumption is incorrect.

ASSUME DIODE IS ON

~A)
[RY]

In this case we obtain V|, = 5V; V, = 0.7V; i = 4.3mA. Since there are
no contradictions, it follows that our assumption was correct, and that the
DC solution can be estimated as:

5
x(0) = 0.7
-4.3x107?

Using this as an initial approximation, Newton’s method converges to:

5.00000
x* 0.67096
-4.33x10°°

after 6 iterations. This is the exact DC solution for our circuit.
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EXAMPLE

In this example, we consider the DC analysis of a circuit with more than
one diode.

1 At 2 e 3
S RVAYAVAVA VNN
l
|
|
Ve '/:\ DN/ /\ D:

|

We will assume that the diodes are identical (with Iy = 10*A), V, =2V
and R, = R, = 1K.

a) Circuit Equations

Stamps for resistors (contribution to G only):

1 2 _ 2
1 1 , 11
Rl R1 1 ) R2 Rz Rz
| - L L 3 - L L
— Rl Rl = - R2 R2 -
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Stamp for voltage source (contribution to both G and w)

-~ 1 4 o - -
1 1|o
v 0 1
g .
411 0 4|v,

1 1 0 |
Rl Rl
1 NLIUE B, 0
Rl Rl 2 R2
G =
0 - L L 0
R2 R2
L1 0 0 0
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b) Setting up Newton’s Method

The function F(x) can be expressed as

fi(x,, x,, x;, x,)

| fi(x), Xy, X5, X)) 1
3

1
—X, - —x2+x4
R, 1
[ilxps Xy, x5, X)) 1 1 1
Tt (=) X,
LH(x x5, x5, %) R, R, R, 2

and we know once again that the Jacobian will consist of two terms:

J(x(k)) = G +

127
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To form dp/dx, we can consider the separate contribution of each diode
in the form of a stamp.

i) Diode current I,,(x,) appears in equation f,(x); since this current
depends only on x,, it will contribute a term dI,/dx, to element J(2, 2)
of the overall Jacobian.

ii) Diode current - I,(x;) appears in equation f;(x); since this current
depends only on x;, it will contribute a term - dl,,/dx; to element J(3, 3)
of the overall Jacobian.

As a result,
0 0 0 0
x. (k)
I 2
0 S e ¥ 0 0
VT
op  _
ox T
0 0 S e 0
VT
0 0 0 0 |
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¢) Obtaining a Good Initial Approximation

To get a good initial approximation, we first need to perform a simplified
analysis of the circuit.

ASSUME D1 IS OFF AND D2 IS ON

| = 2.
 VAVAVAVA VAVAVAVA

(RS}

no

N/ /:~— NS
w2 iz

In this case, V, = 2V and V, = - 0.7V, implying that a reverse current
of 1.35 mA flows through diode D2. This is a contradiction, so it follows
that the assumption is incorrect.

ASSUME BOTH DIODES ARE ON

Vg \/;\ Dy \ Us
\—/ Q — 7

|

|
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Here V, = 0.7V and V, = - 0.7V, so a reverse current of 1.4 mA would
flow through diode D2. This is again a contradiction, and the assumption
must be incorrect.

ASSUME D1 IS ON AND D2 IS OFF

1 Q 1
: YAVAYA AN —

In this case, V, = 2V and V, = V; = 0.7V; everything is consistent, So
the assumption must be correct.

The DC solution can now be estimated as:

2
0.7
0.7

| -1.3x1073 |

x(0) =

Using this as an initial approximation, Newton’s method converges to:
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2.00000
0.64591
0.64591

| -1.354%x 107 ]

after 7 iterations. This is the exact DC solution for our circuit.

DC Analysis of Circuits With Bipolar Transistors

The three-step method of DC analysis that was used in diode circuits can
be extended to circuits with bipolar tranistors (BJT’s). These devices are

modeled by the Ebers - Moll equations

_BE _vff i i
V. V. Vo
lC=ISeT—eT}—_S_[eT
Br
14
1 2 I =<
. Vv y V.
lb=_S-{e’—1]+_S[eT
B, Br

In addition, since i, = i, + i,
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V Ve I
i =IS[eVT—eVT}+__S_{eVT— 1}
Br

Schematically, this model can be represented in terms of two diodes and
a nonlinear current source

|
e
The two diodes have currents
1%
I =
IDI =—S(€ Vr —1)
Br
1%
I. | ==
ID2=—S(€ Ve —1)
Br
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and the current source is defined as

Note that in general this current source depends on three voltages -

EXAMPLE

In this example we will consider the DC analysis of a common emitter
amplifier. For such an analysis, the coupling capacitors are opened, and
the resulting circuit becomes

Vee
4
(P —

A)

(@]

V

(AN

[o9]




If we replace the bipolar transistor with its schematic model, we obtain

Vee
4
(0 —

——:: Rx % % Rc

2

SN

|

|
SNoR

|

DEXV
%QE

&%

a) Circuit Equations

Stamps for resistors (contribution to G only):

X, X,

o X,

R, R, R, ’ R,: 1 _1__

4| - L L k,
R R
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x2

, 1
4 - L
L R,

>c|_; Q:gl,_k .

a

Stamp for voltage source (contribution to both G and w)

_'x4
4
V . 0
8
5 i

l ID[('xl7 xz)

2 _IDI(XI’ xz)
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1 Iy, (x5 xy) 1 i(e Ve _ 1)
Br

_ - Sle T -1
3 I,,(x, x;) 3 ( )

- - -

) I,(x,, x,, x;) 2 I(e i _ e Th )

~
Il

3| -1(x, x,, x;) 3 |-y (e Vv v

b) Setting up Newton’s Method

Forming function F(x) from the individual stamps is straightforward, and
will not be shown here explicitly. The Jacobian, however, is more
interesting and deserves some attention. In the following, we will focus
on the contributions of nonlinear elements to term dp/ox.
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i) Diode current I,(x,, x,) appears in equations f;(x) and f,(x); since this

current depends on both x; and x,, it will contribute four terms to the
overall Jacobian:

X, X,
[ a1, ol,, |
D, : ! 0x, ox,
| 9L, o,
L dx, ox, -

ii) Diode current I,,(x,, x;) appears in equations f;(x) and f;(x); since this

current depends on both x, and x,, it will contribute four terms to the
overall Jacobian:

X Xy
| oI, dl,,
D,: 0x, ox,
3| dl,, ) dl,,
L ox, dx,

iii) The nonlinear current source I,(x,, x,, x,) appears in equations f,(x)
and f;(x); since this current depends on x,, x, and x;, it will contribute six
terms to the overall Jacobian (that is, it has a rectangular stamp):
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xl 'x2 x3
[ 91, ol oI, |
AP B TR PR Y
3|9 9L 9k
L dx, 0x, ox,

The overall Jacobian can now be formed in the usual way, as

J(x(k)) = G + @
ox

¢) Obtaining a Good Initial Approximation

As in the case of diode circuits, to get a good initial approximation for
Newton’s method we need to perform a simplified analysis of the circuit.
We will use the following approximations for the bipolar transistor:
Active region

In this region, we assume that V. = 0.7 V, and that i = Bgiz. Since B
is typically = 100, the base current is of the order of microamps and can
be neglected where appropriate.

Cut off region

In this region, we assume i = i~ = i = 0 (that is, we can eliminate the

transistor from the circuit).
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Saturation

In this region, we assume that Vg = 0.7 V and V. =04 V.

For the common emitter amplifier, the transistor is designed to operate
in the active region. Using the approximations for that region, we have

2 _ . - 3
V1=R1+R2VCC, V,=V -0.7,; IE_E;
and also
I. = Pr I, : V. =V R.I
c_1+BFE’ 2~ Yee  Mefc

If we assume that B, = 100, and use the element values from the previous
section, the DC solution can be estimated as:

x(0) = 3.3
12
| -1.99% 1077 _

Using this as an initial approximation, Newton’s method converges to:
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3.9742
6.2021
x* = 3.2208
12.000

| -1.97x 1073 _

after 11 iterations.

EXAMPLE

In the previous example it was fairly easy to obtain a good initial
approximation for Newton’s method, largely because we had advance
knowledge of the region in which the transistor should operate. We now
provide an example where this is much more difficult to do:

D §
(523

(

e
) % $e,

N
VA
Y F

AN

||t———
lﬂ
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This circuit represents a DTL (diode transistor logic) NAND gate, and
the element values are:

R, = 2K; R, = 5K; R, = 4K; V= 4V; V5= 2V.

Here we have five nonlinear devices, so guessing their mode of operation
involves numerous combinations. In the interest of brevity, we will
consider only a few of them (including, of course, the correct one).

ASSUME D1, D2 - QFF; D3, D4 - ON; BJT - ACTIVE

VCC
A 6
_L N\
= %R,
R, %

VA
VAR
oy

! 2

In this case it follows that V, = 2.1 V, which is a contradiction since
diodes D1 and D2 are assumed to be off (besides, a diode voltage should
not exceed + 0.7V under any circumstances). Therefore, this assumption
is incorrect.
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ASSUME D1, D2 - ON; D3, D4 - OFF; BJT - OFF

q{—j
G

i—
5 PANE
J

u"-j
7

P Var

In this case it follows that V, = 0.7 V and V, = - Vg = - 2V, This
implies that there is a 2.7 V drop across diodes D3 and D4, which is
impossible (the maximal positive drop would be 1.4 V, in case both D3
and D4 are conducting). As a result, this assumption is incorrect,

ASSUME D1, D2, D3, D4 - ON; BJT - SATURATED

\Y/

040 ¢
_l. 8
= %R,

R

D D D, s
_ LA ] L 2 [~
l <l ; 11 ; 11 g
= %Rz

D.

5 4 +

IQ[———»
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In this case, the four conducting diodes imply that V, =0.7 V, V,=0V
and V, =-0.7 V. However, this means that Vg = - 0.7 V, which is
inconsistent with the assumption that the transistor is saturated.

ASSUME D1, D2, D3, D4 - ON; BJT - OFF

VAR
V7

||'—-—~
L

In this case there are no contradictions, so the assumption is correct.
The DC solution can then be estimated as:

x(0) =

-1.65%x107?
| -0.26 % 10'3_
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SECTION 1V:

TRANSIENT ANALYSIS



EQUATIONS FOR TRANSIENT ANALYSIS

In transient analysis, it becomes necessary to consider inductors and
capacitors. As a result, the circuit will now be described by differential
equations. The general format of these equations is

Ex"+Gx+px)-w=0

We begin by considering stamps for capacitors and inductors.

Capacitors

Capacitors are characterized by a relationship between the charge and
the voltage. We will confine our discussion to linear capacitors, where

q=0C0V

The contribution of a linear capacitor to circuit equations 1s

A... g =CV'=C(V,-Vy)

B..-q'=-C(V]-Vy)
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The corresponding stamp contributes to matrix E only

VLV
A cC -C
B . —C C e

Inductors

Inductors are characterized by a relationship between the magnetic flux
and the current. For a linear inductor, this relationship is

o =Li

The contribution of a linear inductor to circuit equations is

A... +i

The corresponding stamp contributes to both E and G:
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g |0 0 o0 vi| B | 0 0 -
com |0 O L | |, | com|-1 1 01|
EXAMPLE
C

o U

|
i @

Stamps for resistors (contribution to G only)

X X,
| 11 X,
Rl R} R,} s R2 3 —1:— }
2 1 1 k,
L Rl Rl —
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Stamp for voltage source (contribution to both G and w)

~ xl x4 _ ~ _
I o 1 110
411 0 41V,

2 Cl _Cl
C,:
3 i —Cl Cl i

. X2 xS - _ xz xs -
21 0 0 2
L , 0 1
510 L, 5| -1 0
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Overall, we have

0 0
0 C,
E =10 -C
0 0
| 0 0
i
Rl
1
Rl
G =
0
1
. 0
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EXAMPLE

C

—_

e

Stamps for resistors (contribution to G only)

- 1 LR
1 Cl —C1 X,
¢ ’ C,: 2 [ C, }
2 L -C, ¢, i

149



Stamp for current source (contribution to w only)

Stamps for the inductors (contribution to E and G)

_xl x3_ X X3_
L 1| 0 0 : 1] 0 1
310 L | 3 -1 0
_X2 x4_ _x2 X,
L: 21 0 0 : 210 |
410 L, | 4| -1 0

The overall matrices are
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e -C, 0 0 |
-C, (C, +C,) 0 0
E =
0 0 L, 0
L0 0 0 L, |
and
T 9 1 0 I,(1)
Rl
0
0 0 0 1
G = it w —
1 O 0 0 0
0 -1 0 0 | 0
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EXAMPLE

C 1 C e
1 | ° i :
w [—
| 1
(VA t R, :: D,
|
Stamp for the resistor (contribution to G only)
x2
R : 2 __1_
Rl
Stamps for the capacitors (contribution to E only)
X Xy X X
C,: : < G ; C,: 2 ¢ ~C
2 - -C, C, | 3 - -G, C, |
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Stamp for the diode (contribution to p(x) only)

— xl x4 - - -
1 1
V. 0 1 0
8 .
411 0 41V,

In this case, we obtain

[ C, -C, 0 0] 0
-C,  (C,+C,) ~-C, 0 0
E = : w =
0 -C, c, O 0
L 0 0 0 0 v,
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and

- 7 0
N
Rl
0
0 0 0 0
G = ;o op(x) = ;
0 0 0 0 Is(ev’—l)
10 0 0 .

COMMENT. It should be observed that the equations in this example
have the general nonlinear format

Ex'"+Gx+px)-w(t) =0

and that the last row of E has only zero elements. This means that one
of the equations is algebraic (that is, contains no derivatives), and that
the remaining three equations are differential. That type of situation is
very common 1in the simulation of nonlinear circuits, and we refer to such
mixed equations as differential - algebraic equations (DAE).
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NUMERICAL INTEGRATION OF DAE

In the previous section, we pointed out that circuit equations

Ex'"+Gx+pkx)-w(t) =0

typically have a singular matrix E, which makes them differential-
algebraic. The most general way of writing such equations is

f(x', x, )=0

To solve these equations numerically, we will consider a slightly simpler
formulation

x" = f(x)

Numerical solution
Select a time step /4, and a sequence of points ¢, {, =f, + h, t, =1 + A,

.., t, =1+ h, ... The equation must be satisfied in all these points,
which implies

x/(t)=f(x(t))

155



The objective will be to approximate the derivative x'(t) using k + 1
points x,, X,,, .., X, as well as s (s < k) previously computed

derivatives x’,_,, ..., x,, . We will say that this is an approximation of
order k.

Since there are k + s + 1 known points we use an interpolation
polynomial of order m=k + s

m t -tY
— n —
x, (1) —Zdi( p ]—a0+alt+...+amt’"
i=0

The interpolation polynomial will be used to approximate x’, with x',(z,).
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By construction, the interpolation polynomial must satisfy

x (t )-x

m\'n-j

/ /
X, (tn_j) = X,

The first k conditions produce

xn :xm(tn) =d0

n— _xm(t 2) Z d2l

xrz-k =xm(tn—k) :Z dkl

0

It

i
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1,2,.

(t -t

n-1

(t,-t

(7, -1

n -k

k)

n-2

.., 8)

=h)

=2h)

=kh)



To use the remaining s conditions, first observe that

These conditions can now be rewritten as

~hx, . =-hx,(t, )=Y id, (t -t _, =h)
i=1

~hx) = -hx,(t, )=Y id 2" (t -t _,=2h)
i=1

~hx, = -hx,(t, )=Y ids"" (t, -t __=sh)
i=1

We now have a total of £ + s + 1 equations for unknown coefficients d.
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In matrix form

X
10 0 0 0 dq "
1 dl Y1
1 2 2?2 m d, Xn-a
k k* k" d. | =| "
O m dk+1 _h xnl*l
01 22 m2m !
m-1
_O 1 2s . . . . . ms |14, ] | hx!. |

Observe that

'y = -Lyia| b Ly lyallh :
X = T - lda. = - — - — la.
" h* ‘U h h' hf ‘h

and consequently

/ / 1
X, = X, (1) = o d,

This means that in each step we need to compute only d,.
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Computation of d,

We have

d

Vg

and therefore

d=[010 ...0]d=e V'z

Denoting @,=¢,' - V', it follows that d, = @, z and

This is a system of linear equations in which (ppT is the unknown vector.
It can be solved off-line, since both V and e, are constant. This is a big
advantage, since computing the whole vector d would require solving a
new system of equations in each step (the right hand side changes!).
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Note that since

Using this notation
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EXAMPLE 1

Approximate x’, using x, and x,,. In this case k = 1 and m = 1, which

is a first order approximation. We have

1 1 d, X

and

The resulting approximation is known as the backward Euler formula

/
~hx, =-x_+x_
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EXAMPLE 2

Approximate x’, using x, , x, ,and x’, . In this case k = 1 and m = 2,
which is also a first order approximation. We have

100||l% X
1 d1 = Xp-1
_O 1 2 N _d2_ _hxn/—l

and

1 10](]% 0 a, = -2
V7(,f>p=e1 = 1 {la =11 = a = 2
12|b | |0 b =-l
Substituting the coefficients
~hx] = a,x, +a,x, ~—hb1x,1/_1 =-2x +2x +hx,1/_1

we obtain the trapezoidal formula

;2 /
X, = " (x, —x ) =X,
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EXAMPLE 3

Approximate x’, using x,, , X, ... , X, (and no derivatives). This is an
approximation of order k, for which

(10 0 ol [d] [~
11 dl xn—l
1222 2 d =] x
LS 1 I A I S

and therefore

1 1 1 a, 0
01 2 k a,
0 1 2? . k? a, | = 0
01 2* . kk a, 0
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In this case m = k, so

k
/ / 1
-hx, —Z; a;x,, = X, = —}.{E a;x,
]:

This corresponds to the class of backward difference formulas (also
known as Gear’s formulas).

Solution using the backward Euler formula

In this case our differential equation can be approximated as

xl’l xn—l f( ) 1
—_— = X n=it,...
h n

To compute x,, in each step we need to solve a non-linear algebraic
equation of the form F(x,) = 0, where

F(x,) = -2 +f(x,) +
) =g T
and x, , 1s known. Note that given x,, x, = x,, x; = X,, .... (that is, only

x, 1s needed). Such a method is called self-starting.
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APPLICATIONS OF TRANSIENT ANALYSIS

Transient analysis is widely used to simulate both analog and digital
circuits. In recent years, there has been a great deal of interest in
simulating large CMOS digital circuits, given that they are designed to
operate at very high frequencies. In the following, we will consider this
type of analysis in more detail.

The Step Response

The step response is of fundamental importance in circuit analysis. We
will illustrate how it is computed by the following example.

EXAMPLE

Consider the circuit

in which V(?) is a unit step function.
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a) Circuit Equations

Stamps for resistors (contribution to G only):

'xl x2 'x2
. S|
R : R, | : R, R,
| oL 1 3| -1
— Rl RI - — R2

_‘xl x4_ — -
1
v 0 1 1|o
g .
411 0 4|V
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The overall matrices are

E =
0 0 C, 0
0 0 0 0
and
1 1 0o 1 ) ]
Rl R1 0
S S S S 0
Rl 1 R2 R2
G = ; w o=
1 1 0
0 - _ 0
R, R,
RACS
L1 0 0 0 _
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b) Discretization

It is first necessary to choose a step size, h. Once this is done, the
derivative at time ¢ = ¢, can be approximated as

Substituting this into the circuit equations, we obtain

—E(x, -x )+Gx-w(t)=0

To compute x,, we now need to solve

Therefore, in each time point ¢,, we must solve a linear equation to
obtain x,. This procedure continues until ¢ = ¢,,; (starting from x, = 0).
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COMMENT. How does a computer handle a discontinuous function
such as the unit step? The way to do this is to approximate an ideal step
as a pulse with a short (but finite) rise time. It should also be noted that
pulses in SPICE are always assumed to be periodic; consequently, to
obtain the proper step response we should choose the period to be >>¢,,,

Obtaining a Good Initial Approximation for DC Analysis

Another important application of transient analysis arises in the context
of DC analysis. We saw earlier that for simple circuits with diodes and/or
BJT’s a good starting point for Newton’s method can be obtained by
various approximations. However, when the circuit becomes larger (or
contains MOSFETS), this is no longer possible, and we need a general
metod for determining an adequate x(0). The following example
illustrates how this can be accomplished using transient analysis.

EXAMPLE

Consider the nonlinear circuit shown below.

1 Ko D

~~ 4
1

mn
w

A j == C, == C, Rs j& D,
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The element values are:
R, =R, =1K; R, =2K; C, = 0.1nF; C, = 1pF; Vg =5V

and we will assume that I, = 10'* A and V; = 25.2mV.

Our objective in this case is to determine a good initial approximation for
the DC solution without using any simplifications for the diodes. An
obvious strategy would be to think of the voltage source as 5 volrt step,
and to observe the transient response of the circuit for a sufficiently long
time (that is, until the steady state is reached). At this point all voltages
would clearly be close to their DC values, and could therefore be used
as a good initial approximation for Newton’s method. We now proceed
to test the effectiveness of this approach.

a) Circuit Equations

Stamps for resistors (contribution to G only):

X X, X, A
i 1 1 5 1 1
R1 : i i ) R2 Rz Rz
| -1 1 N L
i R1 R1 ] i R2 R2 |
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Stamps for capacitors (contribution to E)

_ xl xS - - -
1 110
V- 0 1
3 .
51 1 0 51V,

Stamps for diodes (contribution to p(x))
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The stamps can now be easily combined to form

Ex"+Gx+px)-w(t) =0

b) Discretization

As in the previous example, we first need to choose a step size, A, and
then approximate the derivative at time ¢ = £, as

Substituting this into the circuit equations, we have
F(x) = %E (x,-x_)+Gx +p(x)-w(t) =0

Therefore, in order to compute x, we now need to solve a system of
nonlinear algebraic equations. This means that we need to apply
Newton’s method in every time point, until t = 1,,, .

c¢) Setting Up Newton’s Method

To begin with, let us simplify the notation and rename the vectors as: x,
= x and x,_, = y. By doing so, we avoid unnecessary subscripts, and also
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clearly distinguish the unknown vector x from the known vector y.

In light of the new notation, our equation becomes

F(x) = [%E+G

x +p(x) - %Ey -w(t,) =0
For Newton’s method, we have

F(x(k)) = [% E+G

x(k) + p(x(k)) - f;;Ey - w(r)

and

J(x(k)) = _;Z.E + G + @

ox

As before, the term dp/ox can be formed from the contributions of
individual nonlinear elements.

i) Diode current I, (x;, x,) appears in equations f;(x) and f,(x); since this
current depends on both x; and x,, it will contribute four terms to the
overall Jacobian:

174



X, X,
; dl,, dl,,
D, ox, ox,
4l dl,, ) dl,,

L ox dx, A

ii) Diode current I,,(x,) appears in equation f,(x) only; since this current
depends on x,, it will contribute a single term to the overall Jacobian:

D2

) ox

COMMENT. In applying Newton’s method, it is usually a good idea to
set x(0) = y as the initial approximation. This is because 4 is typically
very small, so x, and x, , are not very different (as two successive time
points).

d) Simulation Results

In order to perform the simulation, we need to treat the voltage source
as a 5 volt step and apply the described procedure in each time point.
This generates a sequence of vectors {x, x;, . . ., x,, . . .}, which
represent discrete values of x(1).

In this example, an appropriate choice would be A =5 x 10" and 1,,, =
4 x 107 seconds. The resulting diode voltages Vp,,(f) and V(1) are
shown below.
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e) An Alternative Approach

The simulation shows that it takes about 400ns before the voltages come
close to their steady state. Given that 4 = 0.5ns, it follows that we need
to compute as many as 800 points, which is not efficient at all.

An alternative approach is to perform a much shorter simulation (perhaps
only 40 or 50 points), since all we really want is a good initial
approximation for the DC solution. In other words, it would make sense
to set ¢,,, = 20ns, as long as x(t,,,) proves to be an adequate initial guess
for Newton’s method.

Using x(f) evaluated at 7,,, = 20ns, we have the following initial guess

5.0000
0.8685
x(0) = 0.7568

0.1737
| -4.13x 1073

With this x(0) as the starting point for Newton’s method, we obtain the
DC solution after 12 iterations :

5.0000
3.9101
x* = 2.8232
2.1827
[ -1.09%x 107
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COMMENT. It is interesting to observe that in this case Newton’s
method will not converge from x(0) = [0 0 0 0 01", or any other similar
initial condition (such as e. g. x(0) = [5 0 0 0 0]"). This obviously
confirms the critical importance of obtaining a good initial condition.

Digital CMOS Circuits

Transient analysis finds a major application in the design and simulation
of digital circuits. Over the last ten years, transistor sizes have decreased
dramatically, and the operating frequencies for many digital circuits have
moved into the 100 MHz range. Under such conditions, it does not
suffice to perform just a logic level analysis; the exact behavior of the
circuit can be captured only through extensive transient simulation.

The most commonly used technology for digital circuits is CMOS. A
schematic representation of an n - channel enhancement type mosfet is
shown below.

~_ - p-type
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The simplest model for this device consists of two capacitors and a
nonlinear current source

Caa
=]
1
G @
I
I
Cos
S
where:
a) If Vg < Vo
I, =0
b) If Vi 2 Vo,
K \
E(VGS_VT,)2 (VDSZVGS _VT,()
I, = 4
Kl(v..-v)v Vos |
( (Vs ~ Tn) DS —TJ (VDS<VGS—VTn)

In the following, we will use V;, = 1V and K = 2 x 10° A/V?, which
are default values in SPICE.
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The model for a p - channel enhancement mosfet is very similar to the
previous one. In this case, we have

S L
where: 4
a) If Vi > VTp
I, =0
b) If Vg < VTp
- K
5 (Vs - V:rp)2 (Vs < Vs - VTP)
I, = o
Vs
L K (VGS_VTP) VDS B T (VDSZVGS_VTP)

In the following, we will use Vy, =- 1V and K = 2 x 10° A/V?, which
are again default values in SPICE.
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EXAMPLE

The simplest CMOS logic gate is the inverter

[RS]

Note that this circuit has a DC voltage source (the power supply) and a
pulse source. As a result, we first need to establish a DC operating point

for the circuit, and then analyze the transient response to the incoming
pulse.

To establish the DC operating point, we will use the same procedure as
in the previous example. In other words, we will consider the transient
response of the circuit to a 5 volt step, and use this as the initial
condition for Newton’s method. The voltage of the pulse source will be
set to zero in this process, and we will observe the transient response for

10 ns (this should provide an adequate initial approximation for the DC
solution).
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a) Circuit Equations

Given the models for n - channel and p - channel mosfets, the inverter
circuit can be schematically represented as

l/-\t
1
C/ \/DD
Cos |
i ¢ 3
; i
| \!) L
‘@ - |
| Cos
|
| 1
; |
i
Lo ! 2
! 5
- i
wgd ‘
N o -
V —) t 1 T ~
8 \\y \/ N ‘
i
Cgs ;
1 ‘
I i

- 73 5 A — -
3 0 1 3 0
VDD: .,
5 I 1 0 ] 50V,
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- 1 4 o P —
1 1|0
v 0 1
g .
411 0 41V,

xl x3
1 -C X
C 8 83 : :
* Cgs. 1 [ Cgs ]
3 -C C
L. IS gs
xl x3
1| 2c, -2cC X,
C  : gd gd : o
e C,: 2 [ c, ]
3| -2¢,, 2c, |

Stamps for the nonlinear current sources (contribution to p(x))

I,: 1101,
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The stamps can again be easily combined to obtain the usual form
Ex"+Gx+px)-w(t) =0

b) The DC Solution

After choosing a step size, h, we obtain the discretized equations as
F(x) = %E (x, -x _)+Gx +p(x)-w()=0

For the purposes of DC analysis, we need to perform a transient analysis
for t < 10ns. In each point, we can set x, = x and x,_, = y, and rewrite the
equation as

F(x) = |LE+G|x +p(x}—%Ey ~w(t) =0

| ——
S| =
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Recalling that in DC analysis the voltage of the pulse source is set to
zero, vector w(t,) becomes

n

=
=
-
N’
1
o o o o

VDD(tn)

As before, the Jacobian in Newton’s method has the form

1 op
J(x(k)) = —E + G it
(x(k)) p + =

and dp/dx can be formed from the contributions of the nonlinear current
sources. Specifically,

i) Current source I,(x, x,, x;) appears in equations f,(x) and f,(x); since
this current depends on both x,, x, and x;, it will contribute six terms to
the overall Jacobian:

X Xy Xy

o
I, : ox, ox, 0x,
IR

L dx, dx, dx, -
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i) Current source Iy(x;, x,) appears in equation f,(x) only; since this
current depends on both x, and x,, it will contribute rwo terms to the

overall Jacobian:

xl 'x2

ol ol
I, : 2| _N _n

ax1 8x2

COMMENT. The models for both I, and Iy depend on the mode of
operation. Therefore, before the Jacobian is evaluated, we need to
establish the region in which the mosfet is working at that point in time
(that is, we need to determine if V(z,) > Vi ; Vps(#,) > Vs(t) - Vi
etc.)

After performing a transient analysis for 10 ns, we obtain the following
initial approximation for the DC solution

0.0000
4.3571
x(0) = 5.0000
3.75x 1077
| -4.73x 1077

Using this x(0), we can solve the DC equations
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Gx+px)-w =0

bearing in mind that in these equations w is a constant vector

S
I
wm o o o O

After 4 iterations, Newton’s method converges to the DC solution

¢) Transient analysis

Having obtained the DC operating point, we can now proceed to analyze
the transient response to pulse source V(7). We have already done most
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of the work for this step, since we previously performed a transient
analysis for 10 ns to get a good initial condition for the DC solution.

There will be three important changes in this step.

(1) We need to include both the pulse source V (¢) and the DC source
Vpp in vector w. In this case, V, will not be treated as a step function,
but rather as a constant (that is, we will set V,, = 5 V at all times).

(2) The initial vector in the transient analysis will be x, = x* instead of
x, = 0. In other words, our transient analysis will start from the DC
operating point.

(3) The simulation time ¢,,;, will be much larger than 10 ns.

With these modifications in mind, we can proceed as before, solving the
discretized equation in each step

F(x) = %E(xn -x, )+ Gx +p(x)-w() =0

The Jacobian in Newton’s method can be formed exactly as before.

To simulate how the inverter responds to an incoming pulse, we assumed
that the n and p channel mosfets both have K = 2 x 10° A/V?, with
threshold voltages of V;, =1V and V, = -1V, respectively. The loading
capacitor was chosen as C; = 0.25pF, and the internal capacitances were
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taken to be C, = 2fF and C,, = IfF.

W further assumed that V,(¢) is a 5 volt pulse, with t, = t. = Ins, and a
pulse width of 100ns. With this in mind, the simulation was performed
over a time of 150 ns, and the resulting output voltage is shown below.

0 0.8 1 1.5
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SECTION V:

ADVANCED TOPICS IN

TRANSIENT ANALYSIS



THE CHOICE OF INTEGRATION STEP

One of the most important issues in transient analysis is the choice of
step h. The following example illustrates some of the issues that need to
be considered in making this choice.

EXAMPLE

Consider the circuit below, in which R = 1K, C = 1pF and L = InH, and
[,(?) 1s a unit step function.

@
i
I
@)
NISLY; MW
-

The solutions for this circuit are

! t

v.(t)=A e © +A e g +RI,

t t

i (1)=Aje " +A e +1,

with 1, = 10® s and T, = 10" 5. As a result, the solution has a fast
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component (corresponding to T,) and a slow component (corresponding
to T,). Capturing the fast component would require a small step (e. g. &
=5 x 10'). On the other hand, the slow component is "active" for at
least 5ns, which implies a huge number of points with the original step
h (10,000 points for a choice of & =5 x 10').

Circuits that exhibit this type of "two time-scale behavior" are frequently
encountered in practice, and are referred to as stiff circuits. For such
systems a fixed choice of 4 is obviously inadequate, and it becomes
necessary to use a variable step size.

Numerical solution with a variable step size

Although a variable step size resolves the stiffness problem, it also raises
a number of other issues. In particular, given a variable step size, are the
previously developed approximations for x/, still valid? The following
analysis provides an answer to that question.

We begin by introducing notation h(n) = t, - t,., and defining

[ - A
_ N n-j
Y= T

In that case, the interpolation polynomial becomes

x, () = E di[t” —t} = E d.t'(n)

i=0 h(n) i=0

As before,
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x,=x,(t)=d,

In addition,

—h(n)x,, ——h(n)x (r_)= Z id,

~h(n)x, = -h(n)x, (t, ) =Y. idt " (n)
i=0
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Our equations for the coefficients now become

(1 0 0 o |4 ] [ = ]
1 1 1 1 xn—l

1 1,(n) t5(n) . . . . . 1(n) d, X

I t(n) () . . . .. Tn) d, |=| X

0 1 2 m d,,, —h)cn/m1
0 1 22 . mom!

0o 1 2t ... omy )| |4, | | -hx!, |

We can rewrite this as

Vi) g =e, = @=0,(n)

which indicates that our discretization formulas may be different in each
step. In other words, the general approximation will now have the form

k §
“h(n)x, =d, =Y a(n)x, ~h(n) Y by(n) %,
j=0 J=1
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implying that coefficients an) and by(n) need to be recomputed every
time the step changes

COMMENT. This process seems very inefficient. However, we should
point out that for lower order methods the formulas are still independent
of h. For example, the equations for the trapezoidal method are

i o _
100/||4% X,
P1L]d =] x,
01 2|d | |-hx_ |

so in that case V # V(n). As a result, the coefficients a,, a, and b, are
indeed independent of n.

Local Truncation Error

Based on what we established so far, it makes sense to use the
trapezoidal method in conjunction with a variable step, h(n). How can
we select an appropriate value for A(n)? To see this, we need to examine
the accuracy of the trapezoidal approximation.

To evaluate the error in computing x,, we will assume that all the
previously computed points are perfectly accurate, (i. e. x, = x(¢,), ....,
X, = x(f,,)), and consider only the error incurred in this step. For
simpler notation, in the following we will use / instead of A(n).
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From Taylor’s formula, we have

/ h2 1 h3 "
x(t)=x(t,_|)+hx (tn_1)+7x (¢, )+ ?x (1, ) +

Similarly, setting y(¢,) = x'(z,) we can write

2

h h’
() =y, ) hy (4, )=y, ) e =y )
which implies that

h? h’
x"(t)=x"(t,_)+hx" (1, )+ —x" (1, )+ —xD(s, ) +
2 6

This last formula allows us to express the second derivative as

1 1 h h?
x"(t, ) = ZX/(t”) - Zx’(tn_l) - Ex’” (1, )~ _6__x(4)(tn_l) +

Substituting this back into the original Taylor series expansion, we obtain
the following expression for x(¢,)

h h h>
r)=x(t + — 1)+ — 4 - — 4 -
x(t)=x(t, ) 5 (t,) 5 (t,.,) 12)6 (t,.)

The first three terms on the right hand side correspond to the trapezoidal
formula, and the remainder represents the local truncation error (that is,
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the error of the trapezoidal approximation in a single step). Given that A
is small, this error can be estimated as

3
E, = 2
12

In performing a transient analysis, we are typically given an error bound
g, defined as

total permissible error at t, ,

!

end

€ =

In order to satisfy this specification, in any given step we can allow only
a fraction of the total error. In other words, E, can not exceed

e - h)

n

*|total permissible error at t, ,| = h(n) €

d
end

Using the expression for E,, we now have

3
hZ(m) o~y e
12

which allows us to calculate h(n) as
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12¢

"

h(n) =

This is precisely how time step control is implemented in SPICE (note
that the third derivative at time ¢, , can be computed easily using divided
differences).

ADVANCED DEVICE MODELS

In our previous analysis of MOSFETS, we assumed that dynamic
behavior of these devices can be modeled by two constant capacitances,
C, and C,. In the case of diodes and bipolar transisors, our models
ignored capacitive effects altogether. At high frequencies, however,
capacitive effects become very important, and must be studied in more
detail. In other words, we will not only have to include additional
capacitors in our models, but will also have to treat them as nonlinear.

Nonlinear capacitors

For a linear capacitor, the charge and voltage are related as g = CV.
However, for semiconducor devices, this simple relationship is no longer
true.

EXAMPLE 1. The capacitance of a pn junction appears in models of
diodes and bipolar transistors.
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a) When the junction is reversely biased, the charge and voltage are
related as

g = Kl[l (1 —%)IM}

where V; represents the voltage across the junction, and K, ® and M are
junction parameters.

b) When the junction is forward biased, the charge and voltage are

related as
Vj
q =K, [e " )

Obviously, in both cases, the g - V relationship is nonlinear.

EXAMPLE 2. In MOSFET devices there are separate charges associated
with the drain, gate, source and bulk. The g - V relationships are very
complicated, and depend on the region of operation. We will show these
relationships for the linear region only (where Vg < Vo - Vo).

a) Gate charge:
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b) Bulk charge:

¢) Drain charge:

d) Source charge:

In these formulas, o= a + b(V - V), where a and b are short channel
parameters. K,, K,, and K, are constants, which depend on the properties
of the MOSFET (width, length, oxide thickness, etc.), and Vi
additionally depends on voltage V; (the so called body effect).
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Apart from being complicated, these ¢ - V relationships create an
additional problem. Namely, each of the charges depends on four
different voltages : Q, = f; (Vs, Vs, Vp, V). As a result, we need to
introduce the concept of distributed capacitances, where a 4 x 4
capacitance matrix is associated with each device.

Circuit Analysis With Nonlinear Capacitors

To keep the analysis relatively simple, in the following we will disregard
distributed capacitances, and consider only g - V relationships of the form
g = @(V). The symbol for a nonlinear capacitor and its contribution to
circuit equations are shown below.

The corresponding stamp contributes to £, G and p(x), and introduces
charge g as a new variable.
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Contribution to E

/
A 0 0 1 Vi
B 0 0 -l V,
CoOM | 0 0 0 | L q' -
Contribution to G and p(x)
A 0 0 0 v, A 0
B [0 0 0 V, | B 0
com |0 0 1] | ] CoOM | -o(V,-V,)
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EXAMPLE
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Stamp for nonlinear capacitor g = v’

COM | 0 0 0

- VI V2 q -
1 o 0 1 1 0
* 2 o o -1 | ° 2 0
CoM | -1 1 0 | cCoM | -(V,-V))* |
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Combining all the stamps, we obtain

/
0 0 ] Vi 0
+
0 C -1 v, 0
0 0 0 | L 4 | -(V,-V)? ]
v v, q
1 0 o | [ [
R, Vi I
8
' 0 1y v, 0
R2
L g L 0
0 0 1
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EXAMPLE
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Stamp for nonlinear resistor

CoOM | 0 0 0

1 0O 0 0 1 0
2 0O 0 0 9 0
com | 0 0 1 | COM | -a(V,-V,)*
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Combining all the stamps

_ I 1 L
C1 0 1 Vll ﬁ 0 0 V1
+
0 G A A 0 0 0 Vs
L I 0o o 1] Lagl
. .
I
8
1%
+ Vi — = 0
IS(e —1) 0
0 |
—OL(V1~V2)2_ B

Transient Analysis With Nonlinear Capacitors

Given that nonlinear capacitors introduce charges as additional variables
and a set of algebraic relationships between ¢ and V, the circuit equations
will have the form
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Ell E12 V/ G11 0 V pl(V) VV1 0
0 0 ||q’ 0 I]|q py(V) 0|

We can break this up into two separate sets of equations

E”V/ +E12q/ +G V+p (V)-w =0

g -p,(V) =0

Using the backward Euler method, the first set of equations can be
approximated at r = ¢, as

1 1
‘h“Eu[Vn _Vn—l] +ZE12[C],, -qn—l] +Gnvn +p1(Vn) _Wl(tn) =0

Since g, = p,(V,) is known, this will be a nonlinear algebraic equation

1 1
FV,) = ZEM [V, -V..1 +ZE12[p2(Vn) -p,(V, )1+

+G11Vn+pl(Vn) _wl(tn) =0
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Setting x =V, and y = V, | (as we did before in transient simulations), it
follows that in each time point we need to solve

1 1
l:—Eu + anlx * ‘HElz pz(x) + p1(x) B

1 1
_li‘h‘Euy +ZE12 pz(y) * Wl(tn)}= 0

This equation can be solved by Newton’s method. The Jacobian will be

0 0
Joy = LE vg o« L PO on )
& h ° ox ox

Note that

dp,(x)

Jpe(x) = G, +
ox

corresponds to the Jacobian used in DC analysis (for which we already
know how to construct the stamps).
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