Projecting climate change impacts on hydrology: the potential role of daily GCM output

E.P. Maurer, H.G. Hidalgo, T. Das, M.D. Dettinger, D. R. Cayan
[1] Santa Clara University, Civil Engineering Department, emaurer@engr.scu.edu, [ii] Scripps Institution of Oceanography, [iii] Scripps Institution of Oceanography and US Geological Survey

Our Goal: Improve methods for projecting climate change impacts to watersheds. Our Focus: Downscaling climate model outputs to capture changes in hydrology.

What we downscale: NCEP/NCAR Reanalysis

- Reanalysis represents the best possible GCM since obs are assimilated
 - Should show same differentiation in methods
 - TSD pre-1990 resolution, comparable to GCMs
 - Full period daily and monthly data available
- 1950–1976 used to “train” downscaling
- 1977–1996 used to assess, used as a “changed climate” for projections
- Shift in PDO in 1976–77, late 20th century warming
- Warmer, wetter in later period over Western U.S.

Downscaling Methods

1. Bias Correction/Spatial Downscaling (BCSD)
 - Discrete daily anomalies, no spatial interpolation
 - Scale not achieved: bias correction
2. Constructed Analogues (CA)
 - Coarse resolution, 22+ GCMs
 - Library of previously observed anomaly patterns
 - Analyze in mean to model combination of best 3 GCMs
 - Interpolate anomalies to 1/8° grid
 - Apply to 1/8° climate

Common Characteristics of BCSD and CA

- Both provide spatially continuous (grided) downscaled fields
- Observed spatial and temporal climate structure maintained
- Capable of downscaling long transient GCM runs

Important Differences Between BCSD and CA

- CA uses daily GCM data; BCSD uses monthly to annual resampling to produce daily values
- BCSD explicitly corrects for systematic GCM biases based on historic GCM performance
- CA corrects mean bias due to using anomalies but not spatial GCM biases

Streamflow Simulations: 22 Years

- Get precipitation-driven daily statistics of low and high flows, BCSD shows correspondence with observations at more locations than for CA

Combining Downscaling Methods

- Step 1 from BCSD applied to daily reanalysis precip
- CA applied (without anomalizing)
- New streamflows generated

Solution: Bias Correct before CA method (BCCA)

- New streamflows generated
- Bias correction at large scale solves problems with peak flows and annual volume
- Problems remain at low flows for BCSD (PCCA outperforms both CA and BCSD for most measures)

Acknowledgements

This project was funded by the California State Energy Resources Conservation and Development Commission, as part of the 2008 Scenarios Impact and Adaptation Study.

Downscaled Meteorology and Derived Hydrology

- Precipitation, mm/d
- Active soil moisture, mm
- Evapotranspiration, mm/d

April 1 snow water equivalent (SWE), mm.

Bias in mean

- SHAST Sacramento R. at Shasta Dam
- SAC_B Sacramento R. at Bend Bridge
- OROVI Feather R. at Oroville
- NF_AM North Fork American R. at N.F. Dam
- FOL_I American R. at Folsom Dam
- PRD_C Mokelumne R. at Pardee
- LK_MC Merced R. at Lake McClure
- MILLE San Joaquin R. at Millerton Lake
- KINGS Kings R. at Pine Flat Dam
- LESFY Colorado R. at Lees Ferry
- DALLE Columbia R. at The Dalles

Bias Correction/Spatial Downscaling (BCSD)

Bias Correct before CA method (BCCA)

Downscaling Methods

Step 1: Bias-Correction
 - At each grid cell, use quantile mapping to match monthly statistics at GCM scale

Step 2: Spatial Downscaling
 - Calculate anomalies relative to coarse-scale climatology
 - Interpolate anomalies to 1/8° grid
 - Apply to 1/8° climatology

constructed analogues (CA)

- Library of previously observed anomaly patterns
- Coarse resolution analogue
- Fine resolution analogue
- Apply analogue to fine resolution climatology

Daily Statistics – Correlation with Observations

- Annual P cycle captured with both methods
- BCSD shows higher 1 daily skills
- Wet and dry seasonaly and interannual variability of soil moisture is rarely reproduced by both BCSD and CA
- End-of-season snow accumulation also appears to be plausibly reproduced by both BCSD and CA
- When BCSD or CA differ from Observations (e.g., April soil moisture in the Pacific Northwest), they differ in similar ways.
- Hydrologic states appear to be recovered well by either downscaling method.

Precipitation, mm/d

- Dry Extremes (20%tile daily P)
- Winter Cool Extremes (10%tile)
- Summer Warm Extremes (90%tile)
- Wet Extremes (90%tile daily P)

Center Timing of Annual Hydrograph, day in water year

- © 2010 American Geophysical Union. All rights reserved. Reproduced with permission.

Drizzle bias (January shown here)
Obs shows 40% of days with zero precip
Reanalysis never has zero precip