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Abstract

Forecasting seasonal runoff is an important chg#en the western U.S. because the timing and
volume of summer (dry season) streamflow playstecal role in managing water supply and
delivery systems. Beginning in December of eadr,ya@bservations of the snow pack begin to
provide invaluable information on the amount ofafirexpected in late spring and summer. The
skill of such water supply forecasts also beneifitsome locations, from the consideration of
synoptic climate indices -- e.g., using sea surtaogerature anomalies to characterize ENSO or
PDO state, which have been shown to have predectaldconnections to land surface hydrology
months in advance. These two sources of forepfmtmation complement each other, with
climate/SST state information providing predictapiat long lead times (3-9 months), and
observed snow and other moisture states of lo¢aheeents providing skill at shorter lead times
(1-4 months). However, because similar SST an@sakan produce widely different future
hydrology outcomes, information at intermediatedlémes describing how a particular
teleconnection or climate pattern is evolving anacro-scale level (especially regarding
precipitation anomalies) may provide additionalghs into future spring and summer runoff. In
this study, we explore the use of a long-term lsundace hydrology data set to define continental-
scale hydrologic indices with potential predictixaue, and to assess where in the western U.S.
these might enhance predictability already achikevabing local observations and climate indices.
We find that the west-wide hydrologic indices hae¢ential value in the Pacific Northwest and the
Southwest, but yield little improvement in otheeas of the western U.S., relative to existing

climate and observation-based indices.



1 INTRODUCTION

Forecasting seasonal runoff is an important chgen the western U.S. because the volume
of summer (dry season) streamflow is critical ia thanagement of water resources, the objectives
of which include water supply for municipal, indugk and agricultural uses, hydropower
generation, navigation, recreation, fisheries amaigion for natural ecosystems (Pagano and
Garen, 2005b). Beginning in December of each yharaccumulating snow pack throughout this
domain begins to provide invaluable information @the amount of runoff expected in late spring
and summer, and in fact, observations of snow wejaivalent (SWE) are the primary predictors
used by operational forecasting entities at therfa@d state and local levels to forecast summer
streamflow. The most common forecasting methacliment operational use is to regress
cumulative streamflow for the summer periods (eAgril-July or April-September) on observed
SWE, cumulative water year precipitation, and aurgg past streamflow, which can be a proxy for
the state of the groundwater or soil moisture fiiver basin. These predictors are almost always
'local' observations -- that is, measured withijust outside the boundaries of the drainage basin
for the streamflow forecast point. Due to the mi@nowmelt in generating streamflow, the
accuracy of the locally-based predictions increaseadily throughout the winter and early spring,
achieving correlations of 90 percent by April Isime locations in the western U.S. (Pagano and
Garen, 2005b). Forecast accuracy is low enoughréehid-December, however, that the lead
forecasting agencies — the USDA National Water@inttate Center (NWCC) and NOAA River

Forecast Centers (RFCs) — have not traditionadlyad forecasts earlier than this in the water year.

The skill of summer water supply forecasts alsceffies) in some locations, from the
consideration of teleconnection indices that réflee connection of variations in continental

climate to variations in sea surface pressuredemgeratures (SSTs) in the oceans. Foremost



among these teleconnections, from the standpoisg@$onal climate prediction, is the El Nino-
Southern Oscillation (ENSO), an ocean-atmospheeag@nena stemming from an oscillation in
the location of a warm pool in the equatorial HadHat is linked to climate patterns in many extra
tropical locations (Goddard et al., 2001). Mangites describing ENSO have been developed,
including the Southern Oscillation Index, whichleefs zonal pressure gradients in the equatorial
Pacific (Ropelewski and Jones, 1987) and the NIMQO8hich measures SSTs in the equatorial
Pacific (Trenberth, 1997), and more recently, faraple, the Trans-Nino Index (TNI), which has
been found to improve predictions in the transizone between the Pacific Northwest and
California (Trenberth and Stepaniak, 2001). EN$O & dramatic influence over western US
climate and hydrology (e.g., McCabe and Detting889; Cayan et al., 1999; Quan et al., 2006],
and in the last decade, advances in understanaenghysics and predictability of ENSO have led
to improvements in hydrologic and streamflow fostoay. A number of studies (e.g., Maurer et
al., 2004; Piechota and Dracup, 1999; Piechot&,et397) have catalogued the streamflow or
hydrologic predictive skill by season and locatfonat least a half-dozen such ocean-based
indices. Typical correlations with future summenaoff range from 0.10 to 0.45, depending on
location, lead time and time of year. The ENSQaesl tend to have predictive value for future
streamflow in the western US beginning in late suanand peaking in late fall. In contrast to the
local predictors described above, the climate telaection indices can be thought of as remote,
measured at a large distance from the streamfloec&st locations. In some western U.S.
locations, the two sources of forecast informatioocal and remote) complement each other, with
ENSO states providing relatively higher predictidypit long lead times (6-9 months), shorter than

which local observations become more useful.



The skill of predicting the SSTs used to deternitéNSO states is higher than that for
predictions of climate (hence of future continemigdirologic variables) at the same lead times due
to the variability of atmospheric conditions thawvdlop during various ENSO phases (e.g.,
Gershunov, 1998). For this reason, informatiorcdesg the actual evolution of a particular
teleconnection or climate pattern (for exampleE&S0O event) in terms of the resulting land
surface moisture states may provide additionaghtsnto future summer runoff before local
predictors become central. Such information regressa third potential category of streamflow
predictor that has not been widely, if at all, expt: synoptic to continental-scale hydrologic
indices reflecting the strength and location of sturie transport onto land, as well as the
persistence of previously accumulated land sunfagisture in various states. Unlike the oceanic
indices, the large scale hydrologic index is nahgrily intended to describe conditions that drive
climate, work to understand land atmosphere feddivechanisms (e.g., Koster et al., 2000; Hong
and Kalnay, 2000) notwithstanding. Rather, it retBethe integration of observed climate patterns
affecting a region over a period of preceding mentA hydrologic index is ‘downstream’ of
oceanic effects on climate, hence offers less ti@ael for predicting hydrologic response than an
ocean-based index. By integrating the climatectsfef large scale circulation patterns, however,
such an index may identify significant seasonalsture accumulation patterns that augment the

information provided by local predictors.

The investigation of synoptic-scale hydrologic teh is motivated by recent hydroclimatic
experience in the western US. For example, in magar 2005 (categorized as a weak La Nina
event) a striking divergence of dry hydrologic ciiaths in the north and wet conditions in the
south (illustrated in Wood and Lettenmaier, 2008yedoped, due in large part to persistence of the

dominant storm track from the Pacific Ocean overtlsern California and a high pressure system



just off the coast of Washington and Oregon. THagh-south dipole of relative moisture
conditions, which forms a prominent mode of hydiroelic variability in the western US

(Dettinger et al., 1998; Cayan et al., 2003), wadent as early as October 2004, lasted through at
least May 2005, and produced both record-settiogvpacks and streamflows throughout the

domain — high in the south, particularly the Cottrdasin, and low in the north.

Recent work focusing on the western U.S. providisiadation for understanding the region’s
spatial and temporal hydro-climatic variability sgpte not addressing summer streamflow
prediction. Working with datasets of point obsdias (e.g., of SWE, precipitation, temperature),
researchers have analyzed spatial and temporabi#sg of hydroclimatic variables in the western
U.S. and elsewhere (e.g., Mote et al., 2005; Cayah, 2001; Cayan, 1996; Hamlet et al., 2005).
Cayan et al. (2003) investigated regional connastmf high and low discharge, and found
statistically significant co-incidence of high floyears in the Sierras and the Columbia Basin, as
well as years of contrasting extremes in Columhik @olorado basin flows. Using streamflow
gage data, others have identified long-term trem@sreamflow and streamflow variability (Jain et
al., 2004; Pagano and Garen, 2005a), in some oas¢ing them to trends in climate patterns.
Spatially distributed model-based (gridded) databave also been the basis for investigations of
land surface moisture variability. Maurer et 20@4), for instance, assessed potential land surfac

and climate index sources of future runoff preditity.

The forecast-centered analysis presented in tipsrdallows a line of inquiry pursued by
Keyantash and Dracup (2004), who found value inueeof first principal component of moisture
variables to characterize droughts in three Calibobasins. Here, we use a retrospective land
surface hydrology data set to define synoptic-shgtirologic indices with potential predictive

value for summer streamflow, and to assess whatevaen these might augment the predictability



achieved using local observations and remote céirtedeéconnection indices. One significant
difference from the Keyantash and Dracup (2004 kwthe derivation of these indices using the
entire western U.S. domain, hence allowing thenpamtion of information external to the
streamflow basins of interest. The central redeguestion is whether the assessment of the entire
west-wide domain can lead to earlier identificatadrthe types of streamflow years highlighted by
Cayan et al. (2003), hence actual streamflow duthiegeak runoff period of the year, than
traditional basin-focused prediction approaches.

2. APPROACH

Two types of indices, both based on hydrologicrimfation from the western U.S. domain, are
investigated as predictors for summer streamflothéwestern US: (1) the principal components
of moisture over the entire domain, defined asstira of SWE and soil moisture; and (2) the
average moisture within defined sub-regions ofdbemain. These are used in a multiple linear
regression framework to forecast April-July strelamvfat 4 major river locations, and compared
with predictions based on NINO3.4 and average mastithin only the drainage areas of each
respective flow location. This section descrilfesdataset from which the indices are derived, the
index derivation procedure, and the streamflowdast locations and regressions.

21 L and surface moistur e dataset

Gridded long-term climatologies of land surfaceiatales such as SWE and soil moisture are
less thoroughly established as a data resourceatiegaatmospheric (re)analyses (a prime example is
the NCEP reanalysis, which has supported a vasy afrresearch and operational activities).
Maurer et al. (2002) provides one of the earliest most comprehensive continental-scale
hydrologic analyses archived for public use: aosgiective model-based simulation of over 40
land surface energy and moisture variables at@Bytimestep and 1/8 degree latitude by

longitude spatial resolution, for a region enconspagthe continental US and portions of Mexico



and Canada. The Maurer et al. (2002) datasetyersrated using the distributed water and
energy balance Variable Infiltration Capacity (VI@acroscale hydrologic model (Liang et al.,
1994; 1996, among others), which has been feataretny analyses of regional and continental
scale hydrology. Since the Maurer et al. (2068)lementation, the model has also been applied
to the domain of this study at 1/8 degree longitogéatitude spatial resolution by Christensen et
al. (2004), Payne et al. (2004), Wood et al. (20081 Rheenen et al. (2004), Wood and
Lettenmaier (2006). Andreadis et al. (2005) alpgragated the 1/8degree parameter sets to

create a %2 degree resolution VIC simulation fordbwetinental US.

In 2005, the VIC parameter sets from the 2 degrgdementation were used in combination
with an index station approach for generating teaé gridded meteorological forcings (Tang et
al., 2007) to create a daily-updating land surfsiomulation for the continental US, called the

Experimental Surface Water (SW) Monitor (describewood et al., 2007; see

http://www.hydro.washington.edu/forecast/monitoThe period of this simulation is from
January 1, 1915 to the present. The current ptedifche system are surface hydrologic and
climate fields (grid cell average precipitatior, @mperature, evapotranspiration, runoff, soil
moisture for three model layers, and snow watenadgnt), data and maps of soil moisture, runoff
and SWE, as well as of their anomalies and pelesnelative to a historical period. The work of
this paper is almost entirely based on the SW Momiimulation of soil moisture and SWE (the
sole deviation from this approach is discussedectiSn 2.3). One aspect of the SW Monitor
system that makes its simulation results apprapfa@tthis work is that the temporal and large-
scale variability of the meteorological forcings the simulation are primarily derived from a set
of NWS Cooperative Observer stations that werecsadiefor their long historical records (45 years

at a minimum, and in many cases much longer) drabte real-time reporting. This



consideration, to some extent, protects the reguftimulations from potentially spurious effects of
inhomogeneities in the station-based observing owtwFor the purpose of real-time estimation of
hydrologic conditions, which is necessary for f@&og applications, the real-time and
retrospective consistency also helps to legitiniimeassessment of current simulated conditions in
the context of the multi-decade simulated histérctianatology.

2.2 Derivation of Moisture Indicesfor Use as Predictors

A common approach to characterizing land surfaceston is to use accumulated
precipitation over a period of several months year — e.g., the Standardized Precipitation Index
(SPI; McKee et al, 1993) is often used as a hydpolmdicator of drought. Although the SPI also
describes the strength and location of moistureraties in the western US, however, it does not
account for the partitioning of rain into snowpasirface runoff and infiltration, or for
evaporation, all processes that regulate land seirfoisture storage and ultimately streamflow
response to precipitation. For that reason, audystocuses on soil moisture and snow water

equivalent as streamflow predictors.

Principal components analysis (PCA) has been usadaqusly to reduce dimensionality in
large data sets and to extract spatially cohereates of variability of many hydrological variables
(e.g., Bartlein, 1982); Cayan, 1996; Cook et &899; Derksen et al, 1997; Guetter and
Georgakakos, 1993; Lins, 1997; Maurer et al., 260dchota et al., 1997; Wittrock and Ripley,
1999). In this study, we apply PCA to charactetigevariability of monthly surface moisture over
the Western U.S. Principal components (PCs) wengpaited on the gridded monthly sum of the
land surface’s stored water (SWE addeddib moisture). The sum of the two fields was used
primarily to avoid the complicating issue of thesenally varying partitioning of moisture

between the two states (e.g., the transfer frorwgnasoil during the melt season). The moisture



data were arranged into a set of 12 matrices, wablone column for each grid cell in the domain
(comprising 1220 1/2 degree grid cells) and onefaveach year. The correlation rather than
covariance matrix was used in the computationfigbltigh PC loadings identified high moisture
variability, rather than regions with relativelyghi surface moisture — i.e., the mountainous and
coastal regions. The original moisture data mesriwere then projected onto the PC loadings

matrix to obtain a time series for each PC and eaahth.

Figures 1, 2 and3 show the PC loading patterns for each month fefitist three PCs, which
together account for 49-53% of the total variararedctober-July, and 41-44% for August-
September. Most of this variance is captured éffitist two PCs, which consequently are chosen
as predictors in the flow prediction regressioncdégd in the following section. The highest
loadings for the first PC appear in the centehefdomain, and exhibit relatively small changes in
amplitude and location throughout the year. Tha #C loading’s timeseries contains variability
at a number of higher frequencies (monthly to emewual), and a remarkable change beginning in
the late 1970s toward a more pronounced lower &egymode of variation. This finding is
consistent with the increasing synchroneity of wastJS climate reported by Jain et al. (2005).
Also notable within the first PC is the correspamzieof low periods with the century’s major
droughts, such as the 1930s, 1977 (which definadymater supply shortage records in the

western US), and the recent 2000s drought in tHer@do R. basin.

The second PC loadings define a dipole with the axented from the US northwest (NW) to
southwest (SW), which is the primary mode of westd¥V moisture variation associated with
ENSO. The second PC timeseries tends to exhibiitarannual frequency variability throughout
the record. The third PC loadings, mostly by cartstof the PCA technique, show a dipole with

the axis oriented from California to Montana, ahd &ssociated timeseries is also dominated by



high frequency variation. Both the second anditRI€ loading patterns also show relatively
modest variation throughout the year. The firstrR&y reflect, to some extent, the overall strength
of moisture transport into the western US, whethasecond and third PCs characterize variations
in the location of the moisture transport, whiclaffected by the ENSO cycle via the jet stream

positioning.

The spatial loadings are also used to guide theeseh of sub-regions within the domain
containing the highest loadings for each of th&t fwo PCs, within which the average moisture is
specified as the basis for an predictive indexe fidtionale for this alterative approach is thetdi
regions that reflect the behavior of the largetigp&eld are easier to monitor than the entieddi
hence a researcher or practitioner without the auugthal to conduct or access land surface
simulations or perform PCA might approximate thapr@ach by averaging the more widely
available point observations of snow, precipitatom streamflow (a potential proxy for soil
moisture) within the sub-regions. The sub-regiamsanalogous to the implementation of latitude-
longitude boxes for SST measurement to generateeimduch as Ninol, Nino 3 and so forth, and

are also similar to the use of river-basin averageise PCA frameworks of studies cited earlier.

Figure 4 delineates one sub-region labeled CNTR that cagtilne high loadings from the first
PC, and the difference of the moisture in the twaregions labeled NW and SW (i.e., NW minus
SW) captures the behavior of the second PC. Treskctors are termed “indexes” in the
subsequent discussion. The delineation of thersgions was the result of visual inspection of the
nodes and antinodes resulting from PCA (as in Walknd Gutzler, 1981), but this choice could
also be accomplished using more objective techsithet would, perhaps, optimize the correlation

of the subareas with the PCs that they approximate.

2.3 Development of regression modelsfor streamflow prediction



The performance of two experimental sets of predscare contrasted with that of more
traditional predictors in a multiple linear regressframework for forecasting summer flow in
several river basins of the western US. The tiadhd predictors for streamflow from a drainage
basin are moisture observations (typically estich&tem accumulated precipitation, streamflow
and/or SWE at measuring stations) within the digenarea. As a surrogate for this approach, we
use the moisture averaged over the grid cells witine drainage basin, termed “local moisture”
(LM). Because the Columbia River basin contaigsisicant drainage area in Canada, outside the
SW monitor boundaries, LM for the Columbia Riversazlculated from a VIC simulation for that
basin taken from the west-wide streamflow forecasslystem described in Wood and Lettenmaier
(2006). The underlying parameters and forcingsHertwo simulations are nearly identical,
differing mainly in resolution and extent. Thelusion of the Canadian portion of the domain
improves the LM estimate for the Columbia RiveheTast, by-now traditional type of predictor
for streamflow is an ENSO teleconnection index viich we use the Nin03.4 SST index, here
termed “teleconnection” (TC). Where their predietskill warrants, teleconnection indices are
now combined with LM indices by operational strelmwfforecasting agencies. The five

forecasting models evaluated in this paper are sanzed inTable 1.

Summer streamflows (April-July volumes) are dendigd@, and are from the four basins
shown inFigure5. The TC, PC and index variables are the samaah equation for each basin,
whereas the LM variable is calculated for the daganbasin for the flows (Q) being predicted.
Forecast equations are developed using monthlygtoedalues for each month from July of the
year previous to the summer flow predictand to Jfrtee same year. The July prediction
equations use moisture from the entire month of, hénce the effective date of the earliest

forecast evaluated in each year is August 1.



The single and multiple linear regression prediceguations were solved using the open
source R statistical software package. A leaveaurieross-validation approach was used to test
the performance of the models derived in this mararel the results given for predicted summer
streamflow are to the extent possible based owrttes-validated performance of the forecast
models. The verifying observations for the forésagere the naturalized monthly streamflow
records for each river location, aggregated tostimamer period of April-July. The length of
record used in the calculations spanned from 1850« end of the available naturalized record for
each basin (2005 for the Columbia and Feather Ri\2804 for the Colorado River, and 1997 for
the upper Rio Grande River), hence the correlat@magenerally applicable for the second half of

the 20" century.
3. RESULTS

Before presenting the results of the forecast modelparison, we describe the behavior of the
PCs and indices relative to the interannual vameitn a flow predictand, using as an example the
Columbia River location, which yielded the bestdactability results of the locations evaluated.
Figure6 illustrates the temporal variation of the predistosed in Table 1 relative to the summer
flow predictand for the Columbia River at the Dall®regon. All timeseries are normalized to the
range 0-1 for comparison purposes. The PCs amdcibreesponding indices (PC1 and CNTR,

PC2 and NW-SW) have similar values, with correlagiof 0.87 and 0.84 for the first and second
PCs with the corresponding index, respectivelyqualitative appraisal suggests that the first PC
and index tend to mirror the lower frequency vaoiain the flow timeseries, particularly in the
latter part of the record, while the second PCiaddx tend to mirror the interannual changes in

the summer flow variable. The LM predictor variesime with the flow predictand, as might be



expected, while the teleconnection index has aergescorrelation with the flow predictand (in this

location), and the poorest relationship with ibdfthe predictors.

For interannual prediction purposes, it is notablEigure 6 that the changes in the second PC
and index often anticipate the changes in the surfiowe (between the previous summer and the
forecasted summer) by a several months. A stronglation between the change of the second
PC or index leading into the fall months in partaciwand the change from the prior year's summer
flow to the future summer flow would be useful feater supply forecasting applications. One
way of assessing this relationship quantitativeloi estimate a linear trend through the PC or
index values for several seasons leading up téathand winter, and then relate that trend to the
year-over-year change in summer flofsigure 7 shows the relationship between trend in the
second index (after normalizing the index to atfeacbetween 0 and 1) during 6-, 7- and 8-month
periods leading up to (a) December 1 and (b) JgriliaiThe strongest relationship is obtained for
longer trend period (8 months) leading up to Jantathe date at which traditional water supply
forecasting regression techniques are beginnis@oav skill. In this case, the trend is for the
period from May through December, and is compapatié change in summer flow from the

current to the following year.

The strong relationship between the behavior osdend index and PC with the interannual
variation in the Columbia River streamflow illugea the source of good correlations between
these indices early in the water year (OctobelSEptember 30) with the summer flow toward the
end of it. For the Columbia River locatidfigure 8 compares the forecast performance of the five
prediction approaches listed in Table 1. The 8tatistic (top) used for comparison is the cross-
validated R, which represents the forecast variance expldiyeatie prediction approach. Note,

cross-validated skill measures such 4s&h (and this case, do) suffer large biases wien t



regression relationship is weak (i.e% IBss than 0.05), hence we show the regressidoratitin R

in those cases (e.g., for LM before December 1)) megligible effect on the results. The August
1 through November 1 forecasts, the teleconne¢li@) affords the only source of predictability,
and at a modest level that declines as the follgwimmer approaches. Beginning December 1,
the traditional local moisture (LM) based foredastjins to register snow accumulation and
steadily increases its correlation with summer femit approaches and enters the forecast period
(the May 1 and June 1 forecasts are within the seinfanecast period, and fall toward the end or
after the snowmelt period). The improvement of fdvecast with the teleconnection (LM+TC)
declines as the water year develops and the vhtyadxplained by the teleconnection begins to be
incorporated into LM in the form of snowpack and swisture. The west-wide predictors
coupled with the teleconnection (labeled PC+TC dBK+TC for the PCs and indices,
respectively) yield the best overall predictionliskihey do not improve upon the LM+TC or TC
only approach until after November 1. From Decendbéairough February 1, theif&Rare 10-20
percent higher than the best of the other appraag@id+TC), after which their skill falls nearer to
that of the LM and LM+TC approaches. The use dides appears to give slightly highesRhan

the use of PCs, but the difference is minimal.

Figure 8 also shows the results for mean relatosolte error (bottom) — where the absolute
error each year is expressed relative to the obderalue in that year — that mirror those f6r R
The approximately 11 percent relative error fordhauary 1 Columbia River forecast is about
equal to that which was achieved in 2002-2006 &/&arwhich data were available) by the
Northwest RFC for the official forecasts of Apribgust flow. The official forecasts are produced

from objective statistical forecasts that are stibjely adjusted by teams of experts.



Like the Columbia River flow location, the Rio GoenRiver at Lobatos, CO, derives flow
from a drainage area that is near a region of higffaglings in the second PC (and near one NW-
SW index sub-region)Figure 9 shows that the upper Rio Grande River forecastsdittle or no
predictability from the teleconnection at any tich&ing the year, and the local moisture (LM)
approaches show only minimal skill through Aprithe start of the summer flow period. This is
largely because the summer flow in this basin iigedronly in part by winter snow accumulation,
and the late spring and summer rainfall that ateged the summer runoff response has little
inherent predictability. The west-wide moistureéa prediction schemes substantially improve
the skill of summer flow predictions from Decembeuntil May 1 (after which they are similar to
the LM-based approach), but the maximum skill dogsapproach that achieved by the Columbia
River forecasts. The degree of variance in sunfloerfor the upper Rio Grande is explained by
both the first and second PCs (and similarly bytéhe indices), with the first predictor

contributing more prediction skill.

A comparison of Figures 1, 2, 4 and 5 shows th@Qblorado River basin upstream of Lees
Ferry, AZ lies between the regions of high loadmghe first and second PCs. This is the likely
reason that the west-wide moisture predictors, ivhgain produce very similar forecast
performance to each other, do not lead to a gngatavement for this flow locatior{gure 10) in
comparison to the traditional LM approaches. Midghe predictability for the Colorado River
flow comes from the first PC and index, rather th@second pair of predictors. The ENSO
teleconnection (in this case, Nino3.4) is not kndaavprovide significant predictability for
Colorado River streamflow, and as a result itsusicn with the LM predictor adds no appreciable
forecast skill (and even slightly reduces the cradglated skill of the prediction combining LM

with TC). The additional variance explained by west-wide predictors is about 10 percent on



December 1, however, which could help to extendehd time at which usable information for

water supply purposes is available.

The fourth basin selected for analysis, the Fed®nezr at Oroville Reservoir, CA, lies outside
the boundaries of the high loading areas for tts West-wide index predictors (PC1 and CNTR),
and lies between the two high loading areas (theld) of the second indices (PC2 and NW-SW).
As shown inFigure 11, the ENSO teleconnection provides essentiallynfiarimation about this
summer flow throughout the water year, and no ptenh approach has skill before December 1.
This is a well-known phenomenon in this region, whecal impacts of ENSO events can vary
substantially (e.g., Maurer et al., 2006). Front®wuber 1 onward, the traditional LM (and
LM+TC) approach is the most skillful predictionaténg to high levels (nearly 80 percent) of
explained variance as the summer period approachas.is because the winter (December-
February) moisture, trapped in the form of SWEhe&smajor component of summer flow. In
contrast, the west-wide moisture predictors netteiraR’s of even 50 percent. Because the third
PC of west-wide moisture contains high loadingthanFeather River drainage, a prediction
approach that included the third PC was also etedifar this basin only. It did not improve
significantly on the performance of the west-widediction schemes, possibly because the relative

percentage of variability explained by the third BGw.

The ENSO influence on western US hydrology is abfjueaptured by the second PC and
index, both of which characterize a dipole of maistbetween the US Pacific Northwest and desert
southwest (centered on Arizona and New Mexico)aregi As shown iff able 2, the variation in
this dipole is the source of all of the skill irettvest-wide predictors for the Columbia River in
November and December, but the first PC and indexribute moderately to Columbia River

prediction skill beginning in January. For the appRio Grande flow, the dipole in the end of the



year is moderately correlated with summer floweafthich the first and second predictors play a
more balanced role. The Colorado River basinpmtrast, gains predictability almost entirely
from variation in the first west-wide predictor§he small difference in performance between the
local moisture and west-wide predictors, couplethwhe geographic proximity of the area of high
loadings in PC1 with the upper Colorado River baksainage, suggest that variations in the
remainder of the west-wide domain add little omuseful information for prediction in this
location. The results from Table 2 for the FeaRer basin indicate a primary influence of PC2
during the fall, but this is inconsequential be@ansither PC1 nor PC2 explain more than a few
percent of summer flow variance until Februaryfiieravhich the Feather River is more correlated

with PC1.
4, DISCUSSION AND CONCLUSIONS

Land surface moisture stored in the soil and infdie of snow integrates climate effects over
periods of months to years and reflects the nagalirdynamics of the land surface’s control on
moisture fluxes. As a result, the evolution of theisture state of the land surface exhibits iaerti
hence auto-correlation that gives rise to predilitgb The synoptic weather systems that affeet th
western US often have a sub-continental scaldehdtto climate patterns, hence land surface
moisture patterns, that are manifested over thesethbmain considered in this study. This
observation is the rationale for investigating tise of indices of moisture variability for the eati
domain (as defined using PCA) as predictors foistreamflow variables that are widely used for
water supply management. Stated another way,reanipe is that because the climate that
determines water supply conditions in one regigait of synoptic-scale systems that affect the
entire western US, a consideration of moisture ttmms$ over a domain extending beyond any

particular region may yield greater insight inte #wolution of those conditions.



From the foregoing analysis, we find that predistoased on synoptic scale hydrologic
conditions have the potential during the fall m@ntit increase prediction skill for future summer
streamflow in parts of the western U.S., relativei$ing local estimates of moisture either alone or
in combination with a SST-based teleconnectionxndenhe four basins selected for use in this
analysis varied in their geographic relationshipht® west-wide moisture indices and the high
loading regions of the two west-wide moisture P&l their usefulness as predictors for summer
flow in the basins varied as a consequence. Wherbasin’s drainage area was adjacent with or
overlapped the index area or the high loading reggisuch as for the Columbia and upper Rio
Grande rivers, the west-wide moisture indices wd|dt times, higher predictive skill than the
teleconnection index and local moisture. Elsewh&uweh as in the Feather River basin, the local
moisture predictors were equal or superior ateatlitimes. The largest benefit of the west-wide
predictors comes early in the water year (betweetiolé2r and January 1), and at least in the
Pacific Northwest, augments the longer lead, buderate level, prediction information of
teleconnection indices such as the Nino3.4 reglonsS Where the west-wide predictors produced
forecasts with higher skill, significant advantagesr local moisture were largely eliminated by

mid-winter.

Several factors that bear on the results of thé/sisaare worth mentioning. First, the west-
wide predictors were developed based on the cortibmaf soil moisture and SWE, two variables
that have distinct roles in the hydrologic cyclel @ontributed differently to the predictability of
runoff. Particularly during the spring in snowmegions, the relative warmth of the year may
determine whether moisture resides in the snowpaak the soil, with consequences for the
timing of the annual rise in streamflow. It is pie, therefore, that strategies making use dadlloc

or west-wide moisture in both of its primary formeuld achieve higher prediction skill,



particularly for schemes based on local moistusetla Also, local moisture schemes that weight
internal areas of a drainage basin, analogousettréditional use of many separate measurement
stations within the basin, may reap added skilinfitbe greater distribution of input information.

As a result, the relative advantages found in sareas from using west-wide predictors may be
smaller in comparison to strategies not considaerd. Second, the index-based scheme uses
predictors that are slightly inter-correlated watlch other (in contrast to the PCs). As a rethdt,
actual skill of the scheme may be lower when useddrecasting in practice than the correlations
found here suggest, and the PC-based schemelistbkafford higher prediction skill even where
the results here appear to be comparable. TheaB€dlregression scheme requires more
sophistication to implement than would a regiondkix approach for forecasting, hence there may
be a tradeoff between ease of use and forecastitiaen@eferring one scheme to the other. Lastly,
the apparent nonstationarity in predictors sucR@% (Figure 1) suggest that, as in forecasting
from traditional predictors, a careful consideratad the historical period that is used in training

the prediction schemes is warranted.
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Caption

The first PC of western US moisture: (a) spdtatlings, with percent variability explained

inset; and (b) timeseries.

The second PC of western US moisture: (a) spaaalings, with percent variability
explained inset; and (b) timeseries.

The third PC of western US moisture: (a) spatiatiings, with percent variability
explained inset; and (b) timeseries.

Definition of index sub-regions based on thstfand second PC loading patterns (for
reference, the October PC loading patterns are ishow

Four streamflow forecasting basins

Time series of predictors plotted against the sunfloe (April-July) for the Columbia
River at the Dalles, Oregon. The predictors am fivo principal components (PC1 and
PC2), their associated indices (CNTR and NW-SWeallonoisture within the Columbia
River drainage basin, and the teleconnection inN&©3.4 (TC). All time series are all
normalized to the range 0-1 for comparison. Themsanflow in each year is plotted as a
bar during the months April through July, with @ntdotted line connecting the bars.
Comparison of trend in the second (i.e., NW-SVdeknear the start of the water near with
the change in streamflow from the previous summéné coming summer, for the
Columbia River at the Dalles, Oregon.

Value of five linear regression based schemegpredicting summer streamflow (April-
July) at the Columbia River at the Dalles, OR lawatbased on the 1950-2005 period.

Statistics shown are cross-validated R2 (top) asdmelative absolute error (bottom).
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11

Value of five linear regression based schemegpredicting summer streamflow (April-
July) at the Rio Grande River at Lobatos, CO largtbased on the 1950-1997 period.
Statistics shown are cross-validated R2 (top) asdmrelative absolute error (bottom).
Value of five linear regression based schemegptedicting summer streamflow (April-
July) at the Colorado River at Lees Ferry, CO lmegtbased on the 1950-2004 period.

Statistics shown are cross-validated R2 (top) aedmrelative absolute error (bottom).

Value of five linear regression based schemegpredicting summer streamflow (April-
July) at the Feather River at Oroville Reservoi, IGcation, based on the 1950-2005
period. Statistics shown are cross-validaté@t®&) and mean relative absolute error

(bottom).
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Figurel The first PC of western US moisture: (a) spdtiatlings, with percent variability

explained inset; and (b) timeseries.



(a) SM+SWE principal component 2 loadings
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Figure2 The second PC of western US moisture: (a) spaaalings, with percent variability

principal component loadings

(b) SM+SWE principal component 2 time series

explained inset; and (b) timeseries.



(a) SM+SWE principal component 3 loadings
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Figure3 The third PC of western US moisture: (a) spatiatiings, with percent variability

explained inset; and (b) timeseries.



Index Regions representing SM+SWE component loadings
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Figure5

Streamflow Forecast Basins
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Time series of predictors and Columbia River flow predictand
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Figure 6 Time series of predictors plotted against the sunfloe (April-July) for the
Columbia River at the Dalles, Oregon. The predsctye first two principal components (PC1 and
PC2), their associated indices (CNTR and NW-SWeallonoisture within the Columbia River
drainage basin, and the teleconnection index, NdhEBC). All time series are all normalized to
the range 0-1 for comparison. The summer flow chegar is plotted as a bar during the months

April through July, with a thin dotted line conniect the bars.



(a) periods leading up to December 1
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Figure7 Comparison of trend in the second (i.e., NW-SVdgeknear the start of the water
near with the change in streamflow from the presisummer to the coming summer, for the

Columbia River at the Dalles, Oregon.



Value of Alternate Predictors for Summer Period Streamflow
Columbia River at The Dalles, OR
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Figure8 Value of five linear regression based schemegptedicting summer streamflow
(April-July) at the Columbia River at the DallesR@bcation, based on the 1950-2005 period.

Statistics shown are cross-validated R2 (top) aedmrelative absolute error (bottom).



Value of Alternate Predictors for Summer Period Streamflow
Rio Grande River at Lobatos, CO
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Figure9 Value of five linear regression based schemepredicting summer streamflow

(April-July) at the Rio Grande River at Lobatos, @0ation, based on the 1950-1997 period.

Statistics shown are cross-validated(®p) and mean relative absolute error (bottom).



Value of Alternate Predictors for Summer Period Streamiflow
Colorado River at Lees Ferry, AZ
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Figure 10 Value of five linear regression based schemegredicting summer streamflow
(April-July) at the Colorado River at Lees Ferry) cation, based on the 1950-2004 period.

Statistics shown are cross-validated(®p) and mean relative absolute error (bottom).



Value of Alternate Predictors for Summer Period Streamflow
Feather River at Oroville Reservoir, CA
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Figurel1l Value of five linear regression based schemegredicting summer streamflow
(April-July) at the Feather River at Oroville Resar, CA location, based on the 1950-2005

period. Statistics shown are cross-validaté@t®) and mean relative absolute error (bottom).



TABLES

Tablel Linear regression equations for predicting sumsteramflow volumes
description (label) equation
teleconnection only (TC) Q=a+Db(TC)
local moisture only (LM) Q=a+b(LM)
local moisture and teleconnection (LM+TC) Q = a(itM) + c(TC)

principal components and teleconnection (PC+T|C) &+=b(PC1) + c¢(PC2) + d(TC)

indices and teleconnection (NDX+TC) Q =a+ b(CNFRY(NW-SW) + d(TC)

Table2 Percentage contribution of PC2 to total variangdared by both PC1 and PC2.
RIVER FORECAST LOCATIONS

Forecast Date Columbia RioGrande Colorado Feather

Nov 1 100 28 1 82
Dec 1 100 20 1 62
Jan 1l 83 50 3 31
Feb 1 76 48 5 14
Mar 1 71 55 10 2
April 83 42 4 2

average 85 41 4 32



