Given: Structure as illustrated below, with applied external forces.
Required: Determine the moment of F about point A at the left end of the beam.

Problem solutions must begin with a statement of the problem, and the required components to determine

Figures should be drawn neatly (with a ruler or handy
 template that accompanies the text. A sloppy drawing cannot convey information clearly. Neatness Counts!

The solution should begin with an outline of the steps, followed by a systematic approach to the solution.
Solution:
a) The moment of the force is equal to the force magnitude times the perpendicular distance, d , from point A to the line of action of the force.
b) Perpendicular distance, $\mathrm{d}=\operatorname{I} \sin \theta=10 \sin \left(70^{\circ}\right)=9.4 \mathrm{ft}$.
c) Moment, $\mathrm{M}_{\mathrm{o}}=\mathrm{Fd}=300(9.40)=2819 \mathrm{lb}-\mathrm{ft}$.

$\mathrm{M}_{\mathrm{o}}=2819 \mathrm{lb} \cdot \mathrm{ft}^{\text {- }}$

The solution must be highlighted (inside a box or circle), and contain the correct units (including direction). Watch extraneous digits!

