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ABSTRACT

A frequently encountered difficulty in assessing model-predicted land–atmosphere exchanges of moisture and
energy is the absence of comprehensive observations to which model predictions can be compared at the spatial
and temporal resolutions at which the models operate. Various methods have been used to evaluate the land
surface schemes in coupled models, including comparisons of model-predicted evapotranspiration with values
derived from atmospheric water balances, comparison of model-predicted energy and radiative fluxes with tower
measurements during periods of intensive observations, comparison of model-predicted runoff with observed
streamflow, and comparison of model predictions of soil moisture with spatial averages of point observations.
While these approaches have provided useful model diagnostic information, the observation-based products used
in the comparisons typically are inconsistent with the model variables with which they are compared—for
example, observations are for points or areas much smaller than the model spatial resolution, comparisons are
restricted to temporal averages, or the spatial scale is large compared to that resolved by the model. Furthermore,
none of the datasets available at present allow an evaluation of the interaction of the water balance components
over large regions for long periods. In this study, a model-derived dataset of land surface states and fluxes is
presented for the conterminous United States and portions of Canada and Mexico. The dataset spans the period
1950–2000, and is at a 3-h time step with a spatial resolution of ⅛ degree. The data are distinct from reanalysis
products in that precipitation is a gridded product derived directly from observations, and both the land surface
water and energy budgets balance at every time step. The surface forcings include precipitation and air tem-
perature (both gridded from observations), and derived downward solar and longwave radiation, vapor pressure
deficit, and wind. Simulated runoff is shown to match observations quite well over large river basins. On this
basis, and given the physically based model parameterizations, it is argued that other terms in the surface water
balance (e.g., soil moisture and evapotranspiration) are well represented, at least for the purposes of diagnostic
studies such as those in which atmospheric model reanalysis products have been widely used. These characteristics
make this dataset useful for a variety of studies, especially where ground observations are lacking.

1. Introduction

Early evidence of the importance of the land surface
as a boundary condition in climate modeling (Namias
1952, 1962) helped inspire the incorporation of land sur-
face representations in coupled atmospheric models

* Joint Institute for Study of the Atmosphere and Ocean Contri-
bution Number 886.

Corresponding author address: Dennis P. Lettenmaier, Department
of Civil and Environmental Engineering, University of Washington,
P.O. Box 352700, Seattle, WA 98195-2700.
E-mail: lettenma@ce.washington.edu

(Manabe 1969). As computational capabilities have im-
proved, the representations of the land surface included
in these coupled models have become more detailed (e.g.,
Mahrt and Pan 1984). Investigations using coupled land–
atmosphere models have shown significant sensitivity of
precipitation forecasts for lead times of several days to
initial land surface states such as soil moisture (Beljaars
et al. 1996; Betts et al. 1996a), and to long-lead (months
or more) forecasts of surface air temperature (Huang et
al. 1996). These sensitivities, of course, vary regionally
and seasonally. For example, Brubaker et al. (1993) argue
that precipitation forecasts should be most sensitive to
land surface conditions where local feedbacks exist
through recycling of moisture via evapotranspiration,
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which in general suggests that sensitivities should be
highest in midcontinental areas in summer. This has been
confirmed recently in experiments by Koster et al. (2000),
where soil moisture memory was shown to be a dominant
source of long-term weather predictability for some mid-
latitude continental regions.

The greatest difficulty in assessing the performance
of coupled (and uncoupled) land–atmosphere parame-
terizations is the absence of comprehensive land surface
observations against which simulations can be com-
pared at the spatial and temporal resolutions at which
the models operate. The Atmospheric Model Intercom-
parison Project (Gates 1992) included global climate
simulations using 31 different coupled models, produc-
ing output including land surface variables of soil mois-
ture, snow, and latent and sensible heat fluxes. In the
validation stage, Gates et al. (1999) compare modeled
precipitation to a gridded global dataset based on both
gauge and satellite estimates (Xie and Arkin 1997),
while most remaining surface variables were only in-
tercompared, due to the limited quality and coverage of
observations. Several methods have been used to eval-
uate the land surface representations in coupled models
in so-called off-line experiments, that is, where surface
forcings to the models (precipitation, surface air tem-
perature, as well as other surface meteorological vari-
ables and radiative forcings) are prescribed. These in-
clude comparisons of model-predicted evapotranspira-
tion with those derived from an atmospheric water bal-
ance (Lohmann et al. 1998a), comparison of
model-predicted energy and radiative fluxes with tower
measurements during periods of intensive observations
(Betts et al. 1996b), comparison of model-predicted run-
off with observed streamflow (Koster et al. 1999), and
comparison of model predictions of soil moisture with
spatial averages over large regions of point observations
of soil moisture (Robock et al. 1998). While these ap-
proaches have provided useful model diagnostic infor-
mation, the observation-based products used in the com-
parisons in all cases have some inconsistency with the
model variables with which they are compared—for ex-
ample, observations are for points or areas much smaller
than the model spatial resolution (in the case of tower
observations), comparisons are restricted to temporal
averages rather than time step evolution of predicted
variables (in the case of soil moisture), or the spatial
scale is large compared to that resolved by the model
(in the case of estimates of evapotranspiration based on
atmospheric budget analysis). Furthermore, none of the
datasets available at present allows an evaluation of the
interaction of the water balance components over large
regions for long periods.

A recent report of the U.S. Global Change Research
Program (Hornberger et al. 2001) on global water cycle
research identified as one of its three ‘‘pillar initiatives’’
determination of ‘‘whether or not the global water cycle
is intensifying and to what degree human activities are
responsible.’’ A key element in any attempt to identify

possible ongoing changes in the land surface component
of the global water cycle is the use of long records to
determine the variability of land surface moisture fluxes
and storages. The lack of long-term, continent-wide ob-
servations of many of the component variables of the
water cycle greatly complicates the direct determination
of changes in most of these variables (Ziegler et al.
2002).

Global reanalyses, such as those produced using glob-
al forecast models of the U.S. National Centers for En-
vironmental Prediction (NCEP; Kalnay et al. 1996) and
the European Centre for Medium-Range Weather Fore-
casts (Gibson et al. 1997) provide one means of diag-
nosing model predictions of moisture and energy fluxes
in the atmosphere and at the land surface. The reanalyses
are produced by implementing a fixed or ‘‘frozen’’ ver-
sion of a weather forecast model retrospectively, using
the best available data in the analysis cycle, and ar-
chiving the model analysis output, which forms a con-
sistent space–time field of all fluxes and state variables
simulated by the model. The initial reanalysis produced
using the NCEP model [produced in cooperation with
the National Center for Atmospheric Research (NCAR),
and usually referred to as the NCEP–NCAR reanalysis]
is termed NRA1, to distinguish it from a more recent
reanalysis, referred to here as NRA2, that uses the same
forecast model (Ebisuzaki et al. 1998; Kanamitsu et al.
2000). NRA1 has been widely used for moisture and
energy budget studies, model diagnosis, and many other
purposes where temporally and spatially continuous/dis-
crete fields are needed. E. Kalnay (2001, personal com-
munication) and her colleagues estimate that over 3000
journal articles have made use of NRA1 directly or in-
directly in the 5 years since the data (now periodically
updated to cover the more than 50-yr period from 1949
to within approximately one month of current time) were
first made publicly available. Reanalyses like NRA1 and
NRA2 can provide an excellent resource for studies ex-
amining variables that are closely linked to assimilated
variables (mostly atmospheric profiles of moisture, tem-
perature, and wind), and in fact Kalnay et al. (1996)
provide a classification of the quality of NRA1 variables
that is largely based on how closely related an archived
variable is to assimilated observations. Under this
scheme, variables related to the land surface water bud-
get are assigned to class C, meaning there are no ob-
servations directly affecting the variables, which are
completely determined by the model, and may have con-
siderable biases. For example, large biases have been
identified in NRA1 precipitation (Higgins et al. 1996;
Janowiak et al. 1998; Trenberth and Guillemot 1998),
evapotranspiration (Lenters et al. 2000), runoff (Roads
and Betts 2000; Coe 2000), snow and soil moisture
(Lenters et al. 2000; Maurer et al. 2001), although in-
terannual variability of some variables, such as precip-
itation and runoff have been found to be better simulated
(Roads and Betts 2000). The follow-up NRA2 dataset
reduces NRA1 land surface water budget biases, though
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some biases remain (Maurer et al. 2001), and NRA2
covers a much shorter period, covering the ‘‘satellite’’
era of 1979–2000.

A major cause of problems with land surface variables
in both NRA1 and NRA2 is the use of soil moisture
‘‘nudging’’ (or adjustment in the case of NRA2), which
results in nonclosure of the surface water budget. Maur-
er et al. (2001) showed that the nonclosure term can be
of the same order as other terms (e.g., runoff ) in the
surface water cycle. Although nudging in a reanalysis
is designed to bring the model state (especially atmo-
spheric moisture variables) closer to observations, this
is done at the expense of other components of the water
budget, and complicates studies focused on the inter-
action and variability of water budget components at
the land surface [see, e.g., Maurer et al. (2001) for an
assessment of the effect of soil moisture nudging on
runoff in NRA1]. For these reasons, reanalysis data can
be inappropriate for diagnosis of land surface moisture
and energy flux and state variable simulations, by either
uncoupled or coupled land–atmosphere models (Maurer
et al. 2000), especially where the relationships between
the budget components and their variability are of in-
terest.

As argued by Maurer et al. (2000, 2001), better data
for diagnosis of land surface water budget simulations
can be produced through use of a physically based land
surface model forced with quality controlled surface
variables, and whose predicted surface runoff, when
routed to correspond to streamflow measurements at the
outlet of large river basins, matches observations. The
effective degrees of freedom in a land surface scheme
can be greatly reduced by prescribing, rather than pre-
dicting, model forcing variables at the land surface. For
consistency of results, land surface schemes should, by
construct, close the surface water and energy budgets
(Pitman et al. 1999), and given the closure of these
budgets by design, the variability and interaction of oth-
er ‘‘internal’’ variables can be expected to be much more
realistic than those produced by reanalyses (or for that
matter, any coupled model) that include some type of
updating of model states.

We describe in this paper a consistent set of obser-
vation-based land surface forcings, and derived surface
fluxes and state variables for a 50-yr period that is more
or less consistent with that available from NRA1. Like
the reanalyses, the derived data are based on use of a
consistent model for the entire simulation period and
model domain. The time step is subdaily (3 h), and the
model (and hence derived data) spatial resolution is ⅛8.
The domain covers all of the conterminous United States
plus a bounding area that covers parts of Canada and
Mexico (specifically latitudes 258–538N and longitudes
678–1258W), and is consistent with the domain and res-
olution of the Land Data Assimilation System (LDAS)–
North America project (see Mitchell et al. 1999). By
construct, the surface energy and water budgets close

at each time step; no assimilation of land surface state
observations is performed.

2. Hydrologic model description

The hydrologic model used in this study is the var-
iable infiltration capacity (VIC) model (Liang et al.
1994, 1996). VIC is a macroscale hydrologic model that
balances both surface energy and water over a grid
mesh, typically at resolutions ranging from a fraction
of a degree to several degrees latitude by longitude.
Macroscale in this context refers to areas above a critical
scale at which subgrid hydrologic variability can be cap-
tured statistically (e.g., Wood et al. 1988)—typically
taken to be around 10 km. The controls of vegetation
on land–atmosphere moisture and energy fluxes within
VIC can be considered to constitute a soil–vegetation–
atmosphere transfer scheme (SVAT). One distinguishing
characteristic of the VIC model is its use of a subgrid
parameterization of the effects of spatial variability in
soils, topography, and vegetation that allows it to rep-
resent the observed nonlinear soil moisture dependence
of the partitioning of precipitation into direct runoff and
infiltration. It also features a nonlinear mechanism for
simulating slow (baseflow) runoff response, and explicit
treatment of vegetation effects on the surface energy
balance.

In contrast with most SVATs, the VIC model gen-
erally [based, for example, on results of the Project for
Intercomparison of Land Surface Parameterization
Schemes (PILPS) experiments; Lohmann et al. 1998a]
does a better job of reproducing observed runoff char-
acteristics, whereas compared with other hydrologic
models, it includes a full energy balance formulation
absent from most hydrologic, or rainfall-runoff models.
The VIC model has been successfully applied to many
large global rivers (e.g., Abdulla et al. 1996; Lohmann
et al. 1998b; Nijssen et al. 1997; Wood et al. 1997;
Nijssen et al. 2001). For this study, the model was run
at a ⅛8 resolution from January 1950 through July 2000
(with 1949 used for a 1-yr spinup to remove the effects
of initial moisture storages).

Prior to conducting the archived simulations de-
scribed in section 5, simulations of more limited length
were conducted for subareas of the domain shown in
Fig. 1. The simulated runoff was routed through the grid
cell network to strategic outlet points, where it was com-
pared to observed, or, where available naturalized (water
management effects removed) runoff. The simulated
runoff was calibrated by adjustment of soil parameters
describing soil depth, baseflow drainage and infiltration
capacity of the soil layers, which is described in greater
detail by Maurer et al. (2001), with the resulting ‘‘pseu-
do-observations’’ used to compare various coupled
models.
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FIG. 1. LDAS domain with modeling subareas.

3. Model input datasets

a. Land surface characteristics

The soil characteristics used were taken from gridded
⅛8 datasets developed as part of the LDAS (Mitchell
et al. 1999) project. Within the conterminous United
States, these datasets are based on the 1-km-resolution
dataset produced by the Pennsylvania State University
(Miller and White 1998). For areas in Canada and Mex-
ico, the LDAS soil data are derived from the 5-min Food
and Agriculture Organization dataset (FAO 1998). Soil
texture in the LDAS dataset is divided into 16 classes
for each of 11 layers, inferring specific soil character-
istics (e.g., field capacity, wilting point, saturated hy-
draulic conductivity) based on the work of Cosby et al.
(1984) and Rawls et al. (1998), and Reynolds et al.
(2000). These LDAS datasets were used to specify the
relevant soil parameters required by the VIC model di-
rectly. For remaining soil characteristics (e.g., soil
quartz content), values were specified using the soil tex-
tures from the 1-km database, which were then indexed
to published parameter values [the primary source was
Rawls et al. (1993)], and aggregated to the ⅛8 model
resolution. The VIC model as applied in this study uses
a three-layer soil column, with depths of each layer
specified for each grid cell as derived during subarea
calibration.

Land cover characterization was based on the Uni-
versity of Maryland global vegetation classifications de-
scribed by Hansen et al. (2000), which has a spatial
resolution of 1 km, and a total of 14 different land cover
classes. From these global data we identified the land
cover types present in each ⅛8 grid cell in the model
domain and the proportion of the grid cell occupied by
each, as described by Maurer et al. (2001). The primary
characteristic of the land cover that affects the hydro-
logic fluxes simulated by the VIC model is leaf area

index (LAI). LAI is derived from the gridded (¼8)
monthly global LAI database of Myneni et al. (1997),
which is inverted using the Hansen et al. land cover
classification to derive monthly mean LAIs for each
vegetation class for each grid cell. The LAI values do
not change from year to year in this implementation of
VIC; hence, interannual variations in vegetation char-
acteristics are ignored. Furthermore, the Myneni et al.
LAI values to which the method is tied are based on
averages over the period 1981–94, which may not be
representative of the entire simulation period. Rooting
depth is specified for each land use type so that shorter
crops and grasses draw moisture from the upper soil
layers, and tree roots from the deeper layer (e.g., Jackson
et al. 1996). Additional parameters for each vegetation
type were assembled based on several sources, including
roughness length and displacement height (Calder
1993), architectural resistance (Ducoudré et al. 1993),
and minimum stomatal resistance (DeFries and Town-
shend 1994).

b. Meteorological and radiative forcings

The VIC model is forced with observed surface me-
teorological data which include precipitation, temper-
ature, wind, vapor pressure, incoming longwave and
shortwave radiation, and air pressure. Because only tem-
perature and precipitation are measured routinely at a
reasonably large number of locations within the domain,
we use established relationships relating these other me-
teorological and radiation variables (excluding wind) to
precipitation, daily temperature, and temperature range.
For example, dewpoint temperature is calculated using
the method of Kimball et al. (1997), which relates the
dewpoint to the daily minimum temperature and pre-
cipitation, and downward shortwave radiation is cal-
culated based on daily temperature range and dewpoint
temperature using a method described by Thornton and
Running (1999). Because surface observations of wind
speed are sparse and are biased toward certain geo-
graphical settings (e.g., airports), daily 10-m wind fields
were obtained from the NCEP–NCAR reanalysis (Kal-
nay et al. 1996), and regridded from the T62 Gaussian
grid (approximately 1.98 square) to the ⅛8 grid using
linear interpolation.

Within the conterminous United States, precipitation
data consist of daily totals from the National Oceanic
and Atmospheric Administration (NOAA) Cooperative
Observer (Co-op) stations, the average density of which
is about one station per 700 km2. Daily precipitation
totals were assigned to each day based on the time of
observation for the gauge. For example, a gauge re-
porting precipitation accumulation at 0700 local stan-
dard time would have 7/24 of the daily total assigned
to the reporting day, and the remainder to the previous
day. The precipitation gauge data were gridded to the
⅛8 resolution using the synergraphic mapping system
(SYMAP) algorithm of Shepard (1984) as implemented
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by Widmann and Bretherton (2000). The gridded daily
precipitation data were then scaled to match the long-
term average of the parameter-elevation regressions on
independent slopes model (PRISM) precipitation cli-
matology (Daly et al. 1994, 1997), which is a compre-
hensive dataset of 12 monthly means for 1961–90 that
is statistically adjusted to capture local variations due
to complex terrain. This was done by generating 12 scale
factors for each grid cell, one for each month, where
each scale factor was the ratio of the PRISM mean
monthly precipitation for 1961–90 to the mean monthly
gridded, unscaled Co-op station precipitation for 1961–
90. Although the PRISM data do account for the lower
station density in more complex terrain, they do not
include an adjustment for precipitation gauge under-
catch, which can be significant especially for snowfall
measurements (Goodison et al. 1998). For this reason,
some underestimate of precipitation may still be present
in snow-dominated areas. The minimum and maximum
daily temperature data, also obtained from Co-op sta-
tions (approximately one station per 1000 square kilo-
meters on average), were gridded using the same al-
gorithm as for precipitation, and were lapsed (at 26.58C
km21) to the grid cell mean elevation. Temperatures at
each time step were interpolated by fitting an asym-
metric spline through the daily maxima and minima.

For Canadian portions of the study area, the daily
gridded precipitation and temperature data are generally
of lower quality than in the U.S. part of the domain,
due to lower station density and the need to include
some less reliable sources to obtain a complete record.
For the years 1949–99 (excluding British Columbia for
1999), observed daily temperature and precipitation sta-
tion data (Environment Canada 1999) were used in the
same manner as were such observations over the United
States. Precipitation is measured at more than 2500 En-
vironment Canada meteorological stations, resulting in
an average station density of one station per 4000 square
kilometers in the region of Canada included in this study
(Metcalf et al. 1997). Additional sources of data were
used to complete the precipitation and temperature forc-
ings for British Columbia for 1999 and for all of Canada
for 2000. For precipitation, the Global Precipitation Cli-
matology Project (GPCP) gridded 18 precipitation prod-
uct (Huffman et al. 2001) was used. The GPCP daily
product, available from 1997 on, is derived from gauge
data merged with satellite estimates of precipitation. The
gauge data in the GPCP product include monthly pre-
cipitation reported via the World Weather Watch Global
Telecommunication System, which are observations at
a lower station density than the Environment Canada
meteorological stations. For temperature, the NCEP–
NCAR reanalysis product (Kalnay et al. 1996) daily
minimum and maximum 2-m air temperatures were
used. At present, the PRISM data do not include Canada
or Mexico, with the exception of the Canadian portion
of the Columbia River basin; hence, no rescaling of

precipitation was performed for the portions of Canada
or Mexico without PRISM data.

As for the Canadian portions of the study area, the
Mexican portion also has a relatively low station den-
sity, and uses data sources that are generally less reliable
than those used within the United States to obtain a
complete record. For the years 1949–97, observed daily
temperature and precipitation station data were used.
Daily precipitation and temperature measurements were
available from 1949 to 1997 at 132 stations in the Mex-
ican region of the domain (Servicio Meteorológico Na-
cional 2000), for an average station density of one sta-
tion per 6000 square kilometers. For 1998–2000, the
GPCP precipitation and the NCEP–NCAR reanalysis air
temperatures were used.

Daily precipitation totals were apportioned evenly
over each 3-h, model time step. To evaluate the sensi-
tivity of the diurnal cycle of model-predicted fluxes to
this assumption, we developed a simple algorithm for
disaggregating daily precipitation. From the NOAA/Na-
tional Climatic Data Center (NOAA/NCDC) Co-op sta-
tions reporting hourly data, we derived the probabilities
of time of occurrence and number of hours of precip-
itation, and created cumulative distribution functions of
these for each season for five ranges of daily total pre-
cipitation at each Co-op station. Using these relation-
ships, we stochastically disaggregated the gridded daily
precipitation and ran the VIC model, with both disag-
gregated and nondisaggregated (evenly distributed
through the day) daily precipitation. A comparison of
the mean diurnal cycle of precipitation, runoff, and
evapotranspiration from these two simulations, run over
the lower Mississippi River basin for 1996–99, is shown
in Fig. 2. Even in the summer, when the diurnal cycle
of precipitation is strongest, the assumption of a uniform
diurnal precipitation rate does not substantially affect
the mean diurnal cycle of the partitioning of precipi-
tation into evapotranspiration and runoff. The same is
true for the mean diurnal cycle of the energy balance.
The use of a constant daily precipitation rate does result
in slightly increased runoff and decreased evapotrans-
piration. However, it should be noted that the model
parameters were estimated based on a constant diurnal
cycle of precipitation, and the results for disaggregated
precipitation may be slightly biased as the model was
not recalibrated to the disaggregated precipitation.
Nonetheless, the results show that the assumption of a
constant diurnal cycle has minimal effect on the model-
derived moisture and energy fluxes.

4. Preliminary analysis

The parameterized forcings and model-simulated var-
iables were compared to selected sets of observations,
where available, in order to evaluate the quality of the
model-simulated data. We present five comparisons
here, both to confirm the validity of the derived vari-
ables, and to illustrate some potential uses of the dataset.
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FIG. 2. Comparison of effect of stochastic disaggregation of daily
precipitation totals vs constant precipitation rate on simulated runoff
and evapotranspiration. Columns are for different variables, and rows
are for each of the four seasons.

a. Comparison of routed VIC runoff with observed
streamflow

As in previous applications of the VIC model, the
runoff was routed from individual grid cells, through a
defined channel network, to produce hydrographs at se-
lected points. The routing algorithm is based on Loh-
mann et al. (1996), which uses daily runoff at each
contributing grid cell. Although the routing model can
be calibrated to improve timing of hydrographs, we per-
formed no calibration of the routing model for this com-
parison. The resulting predicted hydrographs for 12 lo-
cations throughout the domain are shown in Fig. 3. For
comparison, observed flows at U.S. Geological Survey
(USGS) stream gauges are shown. In the case of the
Columbia, Sacramento, Tuolumne, Colorado, Missouri,
Alabama, and Potomac Rivers, naturalized flows, that
is, observed flows that have been adjusted for anthro-
pogenic effects (e.g., irrigation diversions, reservoir
storage, and evaporation) are shown. In general, the VIC
model is quite successful in capturing the peak flows,
the baseflow-dominated low flows, and the interannual
variation of streamflows.

Figure 4 shows the average annual cycle of the sim-
ulated and observed flows for the 10-yr time series in
Fig. 3. As with Fig. 3, the range of flows represented
varies widely between basins. The root-mean-square er-
ror (rmse) and relative bias for these 12 locations are
summarized in Table 1. It should be noted that for the
Arkansas River, significant withdrawals and diversions
affect the observed flows, but unfortunately naturalized

flows for this river are not available for the period an-
alyzed. Therefore it is expected that the simulated flows,
which do not consider water management effects and
diversions, will exceed the observed flows, and in fact
the VIC simulations generally exceed the USGS obser-
vations. Based on data for 1995 (Solley et al. 1998),
the depletions are estimated to be 10%–15% of the an-
nual flow; thus, the relative bias in Table 1 would be
reduced accordingly, as would the rmse. The bias over
all areas, weighted by flow, is quite low; relative bias
for the basins contributing the smallest amounts of flow
tend to be larger than for the higher flow producing
regions. The rmse, representing the average error in
monthly flow simulation, shows the same pattern where
rmse tends to be smaller for the areas contributing great-
er flows. The Moose River in Ontario, Canada, shows
the highest bias and rmse of the basins included in Table
1. This reflects the lower density of meteorological sta-
tions in Canada; hence, greater uncertainty in the forcing
data for the hydrologic model. In addition, the under-
catch of frozen precipitation, which is not corrected for
in this study, would be more important at higher lati-
tudes. Further, no calibration to streamflow was per-
formed for the portions of the domain in Canada (except
the Canadian portion of the Columbia River basin,
which was calibrated) or Mexico, for which soil param-
eters were transferred from the nearest calibrated basins
in the United States. For the Columbia River basin, the
rmse value is inflated due to the timing shift apparent
in both Figs. 3 and 4, which illustrates the sensitivity
of the rmse statistic when applied to timing errors in
seasonal hydrographs. Although no calibration of the
routing model was performed for this study, manually
shifting the flows by 2 to 3 weeks reduces the rmse by
50%. This shows that the simulated model output, when
used with a customized routing for each basin, could
produce simulated streamflows with lower rmse than
that shown in Table 1, although the bias would remain
unchanged. It should be emphasized that the rmse values
shown in Table 1 are applicable to individual months
and years; the errors associated with mean flows aver-
aged over n years would scale by approximately 1/n1/2.

Figure 5 illustrates three important characteristics of
the simulated and observed monthly time series for each
basin, using a Taylor diagram (Taylor 2001). The num-
bers plotted correspond to the numbering of the basins
in Figs. 3 and 4, and the font size for each number is
scaled by the cube root of the observed average flow.
The radial distance from the origin to each number rep-
resents the ratio of the simulated to the observed stan-
dard deviation; the cosine of the azimuth angle repre-
sents the correlation of simulated streamflows with ob-
servations (after removal of the mean); and the distance
from the point where observations would plot, located
at (1, 0), is proportional to the rmse. Figure 5 shows
good correlation of simulated and observed flows, with
all basins exceeding 0.8, and most above 0.9. The most
prominent feature is that the basins with the largest run-
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FIG. 3. Comparison of routed simulated runoff (dashed lines) with observed (or naturalized) streamflows (solid
lines). Ordinate values are runoff in m3 s21, abcissa is a 10-yr period, the beginning of which varies by basin,
depending on observed flow availability. Shaded areas in center panel are the contributing regions to each identified
point.

off show the best correspondence with observed vari-
ance, plotting very close to the dashed line at the radial
value of unity.

The overall success at reproducing runoff hydro-
graphs, taken together with the use of observed precip-
itation, implies that, over timescales long enough for
the change in surface storage to be small relative to the
accumulated values for other variables in the water bud-
get, evapotranspiration (ET) is realistically estimated.
In addition, due to the physically based representation

of soil moisture and runoff generation processes within
the model, simulations of other surface flux and state
variables (e.g., ET, total soil moisture storage, and snow)
should reasonably represent the true (but unobserved)
variables. Although runoff can be validated against ob-
served streamflow at many locations, validation of other
model-simulated variables, such as ET and soil moisture
are more difficult due to the paucity of long-term ob-
servations over broad spatial domains. Ongoing vali-
dation of the dataset presented here will identify areas
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FIG. 4. Average flows by month for each of the 12 basins shown
in Fig. 3. Ordinate values are m3 s21, solid lines are observed or
naturalized flows, and dashed lines are routed simulated runoff.

TABLE 1. Simulated and observed streamflow
comparison statistics.

River
Rmse*

(%)
Relative

bias** (%)

Avg obs
flow

(m3 s21)

Columbia
Sacramento
Tuolumne
Colorado
Neches
Arkansas
Missouri
Upper Mississippi
Ohio
Alabama
Moose
Potomac
Overall (weighted by obs. flow)

44.0
46.4
68.4
45.7
61.4
56.3
38.8
25.6
21.3
48.2
71.8
47.9
34.5

9.0
2 0.4

30.3
26.7
29.5
35.0

23.7
213.8
214.8

31.7
250.9

0.5
23.1

5349
239

76
580

44
1605
3119
3511
9760
1113

738
424

* Rmse 5 [1/nÏS (Qs,i 2 Qo,i)2/ Qo] 3 100% where Qs,i and Qo,i
n
i51

symbolize simulated and observed monthly flow rates, respec-
tively, for month i. The number of months, n, is 120 for all basins.

** Relative bias 5 [(Qs 2 Qo)/Qo] 3 100%.

FIG. 5. Taylor diagram for simulated monthly runoff routed to basin
outlet points. The plotted numbers identify the basin, using the same
numbering system as used in Figs. 3 and 4, and are shown in font
sizes scaled by the cube root of the observed flow. See text for details.

where this approach performs best, and where improve-
ments will be most valuable for future investigations.
We will report later comparisons for a few locations
where long-term observations of variables other than
runoff are available.

b. Comparison with Illinois soil moisture

There are few systematic measurements of soil mois-
ture within the model domain that provide records of a
length sufficient for comparison to the VIC model sim-
ulation. The soil moisture database described by Hol-
linger and Isard (1994), available from as early as 1981
through August 1996 through the Global Soil Moisture
Data Bank (Robock et al. 2000), is unique in the length
and detail of the measurements. Observations are avail-
able from 19 sites distributed more or less uniformly
over Illinois. Soil moisture is reported at 11 different
depths to a total of 2 m, with a sampling interval of
approximately every 2 weeks on average (less frequent-
ly in the winter). For comparison with these 19-point
measurements, we selected the 17 VIC ⅛8 grid cells that
contain all of the observation locations. In addition,
because the soil depths in the VIC grid cells vary be-
tween 1.0 and 2.3 m, only the soil moisture from the
top 1 m from both the observations and the VIC model
were used in the comparisons. Figure 6a compares the
observed monthly average soil moisture for the top 1
m for 1981–96 with the VIC model simulation for the

same period. The climatological soil moisture level for
the VIC simulation is low relative to the observations,
but the average monthly flux, which affects the model’s
water balance, is simulated quite accurately (Fig. 6b).
This suggests that, at least in the Illinois area, the VIC
simulation produces soil moisture storage changes that
are consistent with observations.

Additionally, a monthly time series of average soil
moisture in the top 1 m was computed for both the
Illinois observations and the VIC simulations. The co-
efficient of variation of each month, defined as the stan-
dard deviation divided by the mean, is a measure of the
interannual variability of soil moisture. Figure 6c shows
that the coefficient of variation for the VIC simulations
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FIG. 6. Comparison of observed soil moisture (solid) in Illinois
from 1981–96 with simulated values (dashed) for the same period.
(a) Average soil moisture in the top 1-m of soil for each month; (b)
average soil moisture tendency for each month; (c) coefficient of
variation of monthly soil moisture anomalies; (d) autocorrelation of
soil moisture anomalies.

FIG. 7. Comparison of observed (thick lines) and simulated (thin
lines) downward solar radiation (dotted) and net radiation (solid) at
four SURFRAD sites. Data are averaged for Jun, Jul, and Aug, 1996–
99, with the observations aggregated temporally to 3-h for compar-
ison.

slightly underestimates the seasonal variation of inter-
annual variability seen in the observations. Finally, Fig.
6d illustrates that the autocorrelation of soil moisture
anomalies in the VIC model is similar to that of ob-
served data, which suggests that the persistence of soil
moisture anomalies is comparable in the model and ob-
servations.

c. Comparison of diurnal cycle of surface fluxes with
observations

To evaluate the simulated daily radiation, as well as
the diurnal cycle, we use observations of selected sites
in the continental United States established as part of
the Surface Radiation Budget Network (SURFRAD;

Augustine et al. 2000). We chose the four sites with the
longest records, beginning in 1994–95, which are lo-
cated in Mississippi, Montana, Illinois, and Colorado.
Figure 7 shows the observed downward solar radiation
and net (longwave plus shortwave) radiation fluxes at
these four sites (aggregated from 3 min to 3 h, to match
the VIC simulation time step), averaged for June, July,
and August for 1996–99, and the model-simulated flux-
es for the grid cells containing these points. Both the
simulated average daily downward solar radiation and
net radiation are within 10% of the observations at all
locations; averaged over all sites, these are within 2%.
There is a downward bias of the daily peak for these
fluxes of between 3% and 15%, with an average of 10%
over all sites. In general, the comparisons indicate rea-
sonable agreement of daily radiative fluxes, with some
peak radiation underestimation, across a wide range of
geographical settings.

The First International Satellite Land Surface Cli-
matology Project (ISLSCP) Field Experiment (FIFE)
included an intensive collection of land surface flux data
at multiple locations within a 15 km 3 15 km site near
Manhattan, Kansas, (centered at 39.058N, 96.538W). In-
tensive field campaigns were conducted during the sum-
mers of 1987 and 1989, generally of length about 2–3
weeks each, with continuing observations with fewer
stations during the remainder of the summers, and dur-
ing the summer of 1988 (Sellers et al. 1992). The re-
sulting tower flux observations were compiled and qual-
ity controlled by Betts and Ball (1998). The dataset
provides a multisite average of surface fluxes, reported
every 30 min, that allows examination of the VIC model
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FIG. 8. Comparison of observed (thick lines) and simulated (thin lines) surface fluxes at the FIFE site using
averaged Jun, Jul, and Aug values over 1987–89.

output with an observed diurnal cycle for surface flux
variables.

As an example, we compare the average diurnal cycle
of surface fluxes for the VIC grid cell centered at
39.06258N, 96.56258W, which is comparable to the
FIFE site in location and dimension, measuring 13.9 km
north–south 3 10.8 km east–west. Figure 8a compares
the average diurnal cycle for this grid cell with the FIFE
observations for June–August, averaged over 1987–89.
In general, the VIC-derived peak solar radiation is un-
derestimated by 15%, while the daily average is un-
derestimated by 7%. The net radiation is also under-
estimated relative to the observations, by 16% for the
peak, and by 9% for the daily average. The average
underestimate of the latent heat flux by VIC, for the
averaged 1987–89 period, is 21 W m22, or 19%, which
is equivalent to 0.73 mm day21 of evaporation. This can
be compared to estimates of the site-averaged nonclo-
sure of the water balance for the observations, which
for the period 29 May–16 October 1987 vary from 20
mm (Duan et al. 1996) to 40 mm (Betts and Ball 1998),
or an average 0.14–0.28 mm day21 over the observation
period. As shown in Fig. 8b, the partitioning of the net
radiation into latent and sensible heat does follow the
pattern seen in the observations. The average simulated
sensible heat flux exceeds the observed by 5 W m22,
which is a 16% overestimation. The average Bowen
ratio for daytime hours for the observations for this
period is 0.36, and for VIC is 0.61. Although summer
evapotranspiration for this grid cell shows some bias
relative to the observations, since the model is forced
with precipitation and reproduces observed runoff,
evapotranspiration is correctly estimated over larger ar-
eas.

d. Derived soil moisture persistence

Huang et al. (1996) produced a 63-yr time series of
monthly soil moisture for the conterminous United

States, using historical monthly average precipitation
and temperature at 344 climate divisions. They devel-
oped a simple monthly water balance bucket-type soil
model, where potential evapotranspiration was com-
puted using a temperature index method, which was then
scaled by the soil saturation level to estimate actual
evapotranspiration. Surface runoff was calculated based
on incident monthly precipitation, scaled by a nonlinear
relation of saturation of the soil, and baseflow discharge
from the soil column was a function of soil moisture in
the column. Using their derived soil moistures, they
produced maps of the autocorrelation of soil moisture,
as well as correlations of soil moisture with precipitation
and temperature. Huang et al. apply uniform soil model
parameters to the conterminous United States, devel-
oped based on runoff data in Oklahoma and validated
against soil moisture in Illinois. Figure 9 compares the
autocorrelation of soil moisture anomalies at 3-, 6-, and
9-month lags for the VIC model output. Figure 9d is
comparable to Fig. 3 in Huang et al. (1996). There is
a strong correspondence with the VIC-derived statistics
and Huang et al. (1996). For instance, both sets of results
show higher soil moisture persistence toward the west-
ern portions of the domain, and more moderate levels
in the north-central United States, though the VIC model
correlations are generally lower than the Huang et al.
values by 0.1 to 0.2. Focusing specifically on Illinois,
at a 3-month lag the VIC model simulations show a
monthly autocorrelation of soil moisture anomalies be-
tween May and August of approximately 0.25–0.3 (with
an average of 0.28 over the Illinois area) while the
Huang et al. model estimates approximately 0.35–0.5
for this region. By comparison, the Illinois soil moisture
measurements show a 3-month autocorrelation of soil
moisture anomalies for May–August of 0.27, again us-
ing the soil moisture observations discussed in section
4b. This suggests that, at least for Illinois, the more
complex VIC model land surface representation repro-
duces observed soil moisture persistence somewhat bet-
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FIG. 9. Autocorrelation of soil moisture anomalies at lags of 3, 6, and 9 months. Shaded regions include correlations significant at a
0.05 level.

ter than does the more simplified model of Huang et al.
Figure 9 also illustrates the decay of the autocorrelation
with time. For instance, February soil moisture anom-
alies tend to dissipate more quickly than August anom-
alies, which have significant persistence over larger ar-
eas 9 months later.

e. Observed and simulated snow extent

Northern hemisphere snow-extent data are archived
by the National Snow and Ice Data Center (1996) for
the period 1971–95. These data were derived from dig-

itized versions of manual interpretations of Advanced
Very High Resolution Radiometer (AVHRR), Geosta-
tionary Operational Environmental Satellite (GOES),
and other visible band satellite data, and are gridded to
a spatial resolution of 25 km. For comparison with the
gridded observations of snow extent, Fig. 10 shows the
areas that in the hydrologic model simulation, contain
greater than 5 mm of snow water equivalent on the
selected dates at least 80% of the time during 1971–95.
The contour line in Fig. 10 shows for each date the
extent to which snow cover is observed 80% of the time
during the same period. It should be noted that there is
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FIG. 10. Comparison of simulated snow water equivalent and the
observed snow extent for 1971–95. Contour line indicates the extent
of observed snow cover 80% of the time on the specified date. Shaded
areas are those showing simulated snow water equivalent in excess
of 5 mm 80% of the time on the indicated dates.

TABLE 2. Variables included in data archive.

Variable name Units

Variables (3-h and daily)
Precipitation
Evapotranspiration
Runoff (surface)
Baseflow
Soil moisture, layer 1
Soil moisture, layer 2
Soil moisture, layer 3
Snow water equivalent
Net shortwave radiation at the surface
Incoming (downward) longwave radiation
Net radiation at the surface
Latent heat flux
Sensible heat flux
Ground heat flux
Albedo
Surface (skin) temperature
Relative humidity
Air temperature
Wind speed

Prate
Evap
Qs
Qsb
Soilm1
Soilm2
Soilm3
SWE
SWnet
LWdown
NetRad
Qle
Qh
Qg
Albedo
RadT
RH
Tair2
Wind

kg m22 s21

kg m22 s21

kg m22 s21

kg m22 s21

kg m22

kg m22

kg m22

kg m22

W m22

W m22

W m22

W m22

W m22

W m22

—
K
%
K
m s21

Variables (derived monthly)
Average soil moisture tendency, layer 1
Average soil moisture tendency, layer 2
Average soil moisture tendency, layer 3
Average snow water tendency

DelSoilm1
DelSoilm2
DelSoilm3
DelSWE

kg m22 s21

kg m22 s21

kg m22 s21

kg m22 s21

not direct, fixed correspondence between a specific snow
water equivalent on the ground and snow extent detected
by a satellite, but a qualitative assessment can be made
on the basis of this comparison. Figure 10 illustrates
three features of the model-simulated snow: the seasonal
retreat of the snow line for the eastern half of the domain
closely matches the observations; but the model under-
estimates snow extent in the northern Great Plains; and
a slight overestimation of late-season snow by the model
relative to the observations is apparent in some areas
of the mountainous western United States. Cherkauer

(2001, his appendix A) in a study focused on the upper
Mississippi River basin demonstrated the significant ef-
fect of correcting precipitation for undercatch of pre-
cipitation, especially frozen precipitation. The increase
in winter (December, January, February) precipitation
was greatest in northern areas, and may account for
some of the difference in observed snow extent and
simulated snow water equivalent in the northern Great
Plains.

5. Data format and availability

The data described in this paper are archived in
netCDF format. Monthly summaries of model forcing
variables, model output, and derived variables are avail-
able to the public via FTP from our Web site
(www.hydro.washington.edu). Arrangements are cur-
rently in progress to make the data set accessible via
the University Corporation for Atmospheric Research
(UCAR) Joint Office of Science Support. Details of ac-
cess to the full dataset, which includes 3-h output and
daily summary data archived by variable by year, are
also available from our Web site. This site will also
announce updates of the archive.

The variables included in the archive are listed in
Table 2. For the 3-hourly data, flux variables (in units
of either kg m22 s21 or W m22) reported at each time
step are averages over the preceding 3 h. State variables
(kg m22) are reported at the end of the time step. For
monthly and daily summary data, both flux and state
variables are averages of the eight reported values dur-
ing that day. In addition to the model forcing and output
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variables, there are derived monthly summary data, in-
cluding soil moisture and snow water fluxes averaged
over each month. The variable names are generally con-
sistent with the Assistance for Land Surface Modeling
(ALMA) standards (Polcher et al. 2001). For variables
not included in the ALMA list, variable naming con-
ventions are based on the LDAS (Mitchell et al. 1999)
common output standard.

6. Conclusions

We have described a derived dataset of land surface
states and fluxes for the LDAS domain, which comprises
the conterminous United States, and portions of Canada
and Mexico. The dataset spans the period 1950–2000,
and is at a resolution of ⅛8, or roughly 140 square
kilometers per grid cell on average. The data are distinct
from reanalysis products in that both the water and en-
ergy budgets at the land surface balance at every time
step. Furthermore, the surface forcings include observed
precipitation, and the simulated runoff is shown to
match observations quite well over large river basins,
indicating that, over the long term, in order to balance
precipitation and runoff, evapotransporation must also
be realistic. Given the physically based parameteriza-
tions in the model, we argue that over shorter timescales
other terms in the surface water balance (e.g., soil mois-
ture) are probably well represented, at least for the pur-
poses of diagnostic studies such as those in which re-
analysis products have been widely used. These char-
acteristics give this dataset promise for proving useful
for a variety of studies, especially where ground ob-
servations are lacking. As the data are extended through
2000 and 2001, the overlap of the dataset with archived
model results including assimilation of remotely sensed
observations will provide more opportunities for study.
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