ARM Instructions Worksheet #5

Multiplication

Single/Double-Length, Signed/Unsigned

Prerequisite Reading: Chapter 5

Revised: March 26, 2020

Objectives: To use the web-based simulator (“CPULator”) to better understand ...

1. The MUL, SMULL, and UMULL instructions
2. Single versus double-length products.
3. Signed versus unsigned multiplication.

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

```assembly
.syntax unified
.global _start

00000000    _start:    LDR    R2,=+3        // *** EXECUTION STARTS HERE ***
00000004    LDR    R3,=-5
00000008    MUL    R0,R2,R3
0000000C    SMULL  R0,R1,R2,R3
00000010    LDR    R2,=-3
00000014    LDR    R3,=0x80000000
00000018    MUL    R0,R2,R3
0000001C    UMULL  R0,R1,R2,R3

00000020    done:    B    done
.end
```

Note: Use this hex to decimal converter to convert 64-bit products to decimal.

What is left in R2 by the LDR pseudo-instruction at 00000000? R2 (8 hex digits) R2 (as signed decimal)

What is left in R3 by the LDR pseudo-instruction at 00000004? R3 (8 hex digits) R3 (as signed decimal)

What product is left in R0 by the MUL instruction at 00000008? R0 (8 hex digits) R0 (as signed decimal)

What is left in R1, R0 by the SMULL instruction at 0000000C? R1 (8 hex digits) R0 (8 hex digits) R1,R0 (as signed decimal)

Did the single-length signed product produced by the previous MUL overflow? Yes: ☐ No: ☐

What is left in R2 by the LDR pseudo-instruction at 00000014? R2 (8 hex digits) R2 (as unsigned decimal)

What is left in R4 by the LDR pseudo-instruction at 00000018? R3 (8 hex digits) R3 (as unsigned decimal)

What product is left in R0 by the MUL instruction at 0000001C? R0 (8 hex digits) R0 (as unsigned decimal)
What is left in R1, R0 by the UMULL instruction at 0000001C16?

R1 (8 hex digits) R0 (8 hex digits) R1.R0 (as unsigned decimal)

Did the single-length unsigned product produced by the previous MUL overflow? Yes: No:

Getting ready: Now use the simulator to collect the following information and compare to your earlier answers.

1. Click here to open a browser for the ARM instruction simulator with pre-loaded code.

Note: You can change the number format in the “Settings” window between hex, unsigned decimal and signed decimal as needed. For 64-bit products, use this hex to decimal converter.

Step 1: Press F2 exactly 2 times to execute the two LDR pseudo-instructions (MOV, MVN) to provide the operands

What is left in R2 by the LDR pseudo-instruction at 0000000016?

R2 (8 hex digits) R2 (as signed decimal)

What is left in R3 by the LDR pseudo-instruction at 0000000416?

R3 (8 hex digits) R3 (as signed decimal)

Step 2: Press F2 exactly once to execute the MUL R0, R2, R3 instruction.

What product is left in R0 by the MUL instruction at 0000000816?

R0 (8 hex digits) R0 (as signed decimal)

Step 3: Press F2 exactly once to execute the SMULL R0, R1, R2, R3 instruction.

What is left in R1, R0 by the SMULL instruction at 0000001C16?

R1 (8 hex digits) R0 (8 hex digits) R1.R0 (as signed decimal)

Did the single-length signed product produced by the previous MUL overflow? Yes: No:

Step 4: Press F2 exactly 2 times to execute the two LDR pseudo-instructions (MOV, MOV) to provide the operands

What is left in R2 by the LDR pseudo-instruction at 0000001016?

R2 (8 hex digits) R2 (as unsigned decimal)

What is left in R4 by the LDR pseudo-instruction at 0000001416?

R3 (8 hex digits) R3 (as unsigned decimal)

Step 5: Press F2 exactly once to execute the MUL R0, R2, R3 instruction.

What product is left in R0 by the MUL instruction at 0000001816?

R0 (8 hex digits) R0 (as unsigned decimal)

Step 6: Press F2 exactly once to execute the UMULL R0, R1, R2, R3 instruction.

What is left in R1, R0 by the UMULL instruction at 0000001C16?

R1 (8 hex digits) R0 (8 hex digits) R1.R0 (as unsigned decimal)

Did the single-length unsigned product produced by the previous MUL overflow? Yes: No: