ARM Assembly for Embedded Applications

sth edition
DANEL W Lewis

ARM Instructions Worksheet \#4
 Addition and Subtraction

Prerequisite Reading: Chapter 5

Revised: March 26, 2020

Objectives: To use the web-based simulator ("CPULator") to better understand .

1. That the flags are not affected unless the letter ' S ' is appended to the instruction.
2. How the oVerflow flag (V) is affected as the result of a signed addition or a signed subtraction.
3. How the Carry flag (C) is affected as the result of an unsigned addition or an unsigned subtraction.
4. How to Zero flag (Z) and Negative flag (N) are affected as the result of an arithmetic operation.

To do offline: Answer the questions that follow the listing below. (Numbers at far left are memory addresses.)

What is left in R0 by the LDR at 00000004_{16} ?

What is in R1 and flags after ADD at 00000008_{16} ?
Unsigned Overflow? \square Signed Overflow? \square
What is in R1 and flags after ADDS at $0000000 \mathrm{C}_{16}$? Unsigned Overflow? \square Signed Overflow? \square

What is in R1 and flags after SUBS at 00000010_{16} ?
Unsigned Overflow? \square Signed Overflow?
What is in R1 and flags after ADCS at 00000014_{16} ? Unsigned Overflow? \square Signed Overflow? \square

What is in R1 and flags after RSBS at 00000018_{16} ? Unsigned Overflow? \square Signed Overflow? \qquad

Getting ready: Now use the simulator to collect the following information and compare to your earlier answers.

1. Click here to open a browser for the ARM instruction simulator with pre-loaded code.

Note: You can change the number format in the "Settings" window between hex, unsigned decimal and signed decimal as needed. It's probably easiest to go through the instructions three times - once to get the unsigned decimal values, once to get the signed decimal values, and once to get the flag values (using hex format). Before each pass, press Ctrl-R to restart the simulation.

Step 1: Press F2 exactly 2 times to execute the MSR, LDR pseudo-instruction (MOV) sequence

What is left in R0 by the LDR at 00000004_{16} ?

Step 2: Press F2 exactly once to execute the $A D D R 1, R 0, R 0$ instruction.

What is in R1 and flags after ADD at 00000008_{16} ?
Unsigned Overflow? \square Signed Overflow? \square

Step 3: Press F2 exactly once to execute the ADDS R1, R0, R0 instruction.

What is in R1 and flags after ADDS at $0000000 \mathrm{C}_{16}$?
Unsigned Overflow? \square Signed Overflow? \square

Step 4: Press F2 exactly once to execute the SUBS R1, R0, R0 instruction.

What is in R1 and flags after SUBS at 00000010_{16} ?
Unsigned Overflow? \square Signed Overflow? \square
\square

Step 5: Press F2 exactly once to execute the ADCS R1, R1, 0 instruction.

What is in R1 and flags after ADCS at 00000014_{16} ?
Unsigned Overflow? \square Signed Overflow? \square
\square

Step 6: Press F2 exactly once to execute the RSBS R1, R1, 1 instruction.

What is in R1 and flags after RSBS at 00000018_{16} ?
Unsigned Overflow? \square Signed Overflow? \square
\square
\square

