ARM Assembly for Embedded Applications

Prerequisite Reading: Chapters 1-9

Revised: June 22, 2021

Background ${ }^{1}$: The inverse square root $(1 / \sqrt{x})$ is used extensively in computer graphics programs to compute angles of incidence and reflection for lighting and shading. Normally, this would require using the two slowest floating-point instructions - VSQRT and VDIV. However, in 1999 a faster alternative based on Newton's rootfinding method was used in the source code of the game Quake III Arena.

The algorithm treats the bits representing the floating-point number as a 32-bit integer, logically shifts them right by one bit, and then subtracts the result from the number $0 \times 5 \mathrm{~F} 3759 \mathrm{DF}$, which is a floating-point representation of an approximation of $\sqrt{2^{127}}$. This provides a very good first approximation of the inverse square root of the input. Treating the bits of this result as a floating-point number, it then runs one iteration of Newton's method, yielding a more precise final approximation.

Assignment: The main program will compile and run without writing any assembly. However, your task is to create equivalent replacements in assembly language for the two C functions shown below and found in the main program. The original C versions of the functions have been defined as "weak" so that the linker will automatically replace them in the executable image by those you create in assembly; you do not need to remove the C versions.
float SlowInvSqrt(float radicand) ;
Uses square root and divide instructions to compute the result.
float FastInvSqrt(float radicand) ;
Newton's method with first approximation described above.
Test your implementation using the C main program. If your code is correct, the program will call the two functions continuously with random floating-point values, displaying their resulting values, the absolute, relative, minimum, average and maximum error, and the execution time performance. Pressing and holding the blue pushbutton will pause the execution; releasing the pushbutton allows execution to resume. If an error occurs, an error message will be displayed as white text on a red background and execution halted.

ARM Assembly
for Embedded Applications

Radicand: 2.050577E-24
SlowInvSqrt: $6.983320 \mathrm{E}+11$
FastInvSqrt: 6.971507E+l1
Abs Error: 1.181352E+09
Rel Error: 0.169 percent
Min Error: 0.000 percent
Avg Error: 0.095 percent
Max Error: 0.175 percent
SlowInvSqrt: 26 clock cyc FastInvSqrt: 17 clock cyc Improvement: 1.53x

Press Blue Pushbutton to Pause

Lab 9F: Inverse Square Root

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Fast inverse square root

