

Programming Lab 11A

Arithmetic with Reals
Topics: Alternative representations of reals; floating-point
hardware & emulation, Q16 fixed-point, posit emulation.

Prerequisite Reading: Chapters 1-11
Revised: June 7, 2021

Click to download

Lab11A-Main.c

Click to download

real-libs.zip

Background: Real numbers may be represented in floating-point1, fixed-point2,

or posit3 format. Arithmetic using these representations may be implemented in

hardware, or in software written in either a high-level language or assembly.

This lab explores the relative performance of these alternatives by evaluating

Taylor series approximations of the sine function – i.e., polynomials with coef-

ficient (𝑎0, 𝑎1, 𝑎2,⋯) chosen to produce sin(x):

𝑝𝑜𝑙𝑦(𝑥) = 𝑎0 + 𝑎1𝑥
1 + 𝑎2𝑥

2 +⋯+ 𝑎𝑛−1𝑥
𝑛−1

The polynomial is most efficiently evaluated using Horner’s method4, working

backwards from 𝑎𝑛−1to 𝑎0:

𝑝𝑜𝑙𝑦(𝑥) = (((0)𝑥 + 𝑎𝑛−1)𝑥 + 𝑎𝑛−2)𝑥 + ⋯+ 𝑎0

Assignment: The main program will compile and run without writing any as-

sembly. However, your task is to create equivalent replacements in assembly

language for the following five functions found in the C main program. The

original C versions have been defined as “weak” so that the linker will automat-

ically replace them in the executable image by those you create in assembly; you

do not need to remove the C versions. This allows you to create and test your

assembly language functions one at a time. The five function prototypes share a

common format, but the function-name and data-type vary. (Note: The code for each of the last three functions should be

almost identical.)

data-type function-name(data-type x, data-type a[], int32_t n) ;

function-name data-type same as Implement this function in assembly using …

FPH_Poly float float floating-point addition & multiply instructions

Q16_Poly Q16 int32_t integer addition & multiply instructions

FPA_Poly float32_t int32_t ASM library functions qfp_fadd & qfp_fmul

FPC_Poly float32_t int32_t C library functions AddFloats & MulFloats

POS_Poly posit32_t int32_t C library functions AddPosits & MulPosits

Download the main program and real-libs.zip. Inside the zip are the library files lib1-float.s, lib2-float.c,

and lib3-posit.c to be extracted into your src directory together with the C main program. The program calls each of

your polynomial functions with an array of 𝑛 coefficients chosen to approximate the sine function at an angle 𝑥 expressed

in radians. Since the approximation of the sine function requires fewer terms near 𝑥 = 0 for the same accuracy, the main

program varies 𝑛 from 0 to 8 to reduce average execution time. The values returned by your polynomial functions are used

to display moving sine waves. If your code is correct, the display should look like the image above although with possibly

different cycle counts. Error messages (if any) will appear as white text on a red background.

1 https://en.wikipedia.org/wiki/Floating-point_arithmetic
2 https://en.wikipedia.org/wiki/Fixed-point_arithmetic
3 https://en.wikipedia.org/wiki/Unum_(number_format)
4 https://en.wikipedia.org/wiki/Horner%27s_method

http://www.engr.scu.edu/~dlewis/book3/labs/Lab11A-Main.c
http://www.engr.scu.edu/~dlewis/book3/software/real-libs.zip
http://www.engr.scu.edu/~dlewis/book3/labs/Lab11A-Main.c
http://www.engr.scu.edu/~dlewis/book3/software/real-libs.zip
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Fixed-point_arithmetic
https://en.wikipedia.org/wiki/Unum_(number_format)
https://en.wikipedia.org/wiki/Horner%27s_method
http://www.engr.scu.edu/~dlewis/book3/labs/Lab11A-Main.c
http://www.engr.scu.edu/~dlewis/book3/software/real-libs.zip

