Assembler Bugs November 16, 2022

"VLDR S0,=1.0" rejected, but accepts ""VLDR S0,=1" and generates bad code.

Ref: https://bugs.launchpad.net/gcc-arm-embedded/+bug/1695572

The instruction VLDR S0,=1.0 is rejected by the assembler, but VLDR S0,=1 is accepted.
However, using an integer constant does NOT load the floating-point 1.0 (0x3F800000) into SO;
instead it loads the integer representation of 1 (i.e., 0x00000001) into SO.

(Has NOT been corrected as of version 12.2.0-1 of GNU ARM Embedded Toolchain.)

gnu assembler can't deal with AL condition code in IT block

Ref: https://bugs.launchpad.net/gcc-arm-embedded/+bug/1620025

As a result, the coding technique used in section 6.5.1 of the 4™ and 5" editions of the text to
reduce code size currently will not assemble.

(Has NOT been corrected as of version 12.2.0-1 of GNU ARM Embedded Toolchain.)

VLDR/VSTR S0,[R0,R1] accepted; assembles as VLDR/VSTR S0,[R0]

Ref: https://bugs.launchpad.net/gcc-arm-embedded/+bug/1996779

The assembler accepts without any warning or error message VSTR and VLDR instructions with
the memory addressing mode of [Rn, Rm]. This memory addressing mode does not exist for
these instructions, as the modes are limited to [Rn] and [Rn, #imm]. But the assembler accepts
them anyway, and then produces code that ignores the Rm index register.

(Has NOT been corrected as of version 12.2.0-1 of GNU ARM Embedded Toolchain.)



https://bugs.launchpad.net/gcc-arm-embedded/+bug/1695572
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1620025
https://bugs.launchpad.net/gcc-arm-embedded/+bug/1996779

