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Project 2: The Four Types of Attractors

The purpose of this project is to introduce the notion of an attractor, which is a fundamental

concept in the analysis of dynamic systems. You can think of an attractor as a sort of “magnet”,

which “gathers” solutions that start from different initial conditions, and draws them toward

itself . In the following problems, you will have a chance to examine the four types of attractors

that can arise in nonlinear dynamic systems. The most interesting kind are so-called strange

attractors, which are a “trademark” of chaos. These geometric objects are fractals, which means

that their dimension is not a whole number.

Note: Before you begin working on this project, make sure you go over Demo 2.

Problem 1. Consider the second order linear differential equation

ẋ1 = x1 − x2
ẋ2 = 3x1 − 2.5x2

(a) Solve the equation numerically for the following four initial conditions: x0 = [1;−1], x0 =
[−1; 1], x0 = [−1;−3], and x0 = [0.5; 2] (use t = 0 : 0.01 : 20 in all cases). Plot the four solutions
for x1(t) on a single diagram, and use this diagram to determine what happens to x1(t) when

t→∞. Repeat this exercise for x2(t) (and create a separate plot for this purpose).
(b) Use the solutions obtained in part (a) to construct a phase plot for this system. Based on

this plot, how would you describe the geometrical object to which the solutions are attracted?

Problem 2. In this problem, we will look at a different linear system, which is described as

ẋ1 = −0.5x1 + 4x2
ẋ2 = −4x1 − 0.5x2

(a) Solve the equation numerically for initial conditions: x0 = [1; 1] and x0 = [−1;−1] (use
t = 0 : 0.01 : 12 in both cases). Plot the two solutions for x1(t) on a single diagram, and use

this diagram to determine what happens to x1(t) when t → ∞. Repeat this exercise for x2(t)
(and create a separate plot for this purpose).

(b) Use the solutions obtained in part (a) to construct a phase plot for this system. Based on

this plot, how would you describe the geometrical object to which the solutions are attracted?

(c) How is the phase plot obtained in this problem different from the one obtained in Problem

1? What do you think causes this difference? Can you also identify some similarities between

the two plots? Explain.
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Problem 3. Consider the second order nonlinear system

ẋ1 = −3x1 + 4x21 − 0.5x1x2 − x31
ẋ2 = −2.1x2 + x1x2

(a) Solve the equation numerically for the following four initial conditions: x0 = [4; 2], x0 =

[−1; 3], x0 = [0.5;−2], and x0 = [−2;−2] (use t = 0 : 0.01 : 50 in all cases). Plot the four

solutions for x1(t) on a single diagram, and use this diagram to determine what happens to

x1(t) when t→∞. Repeat this exercise for x2(t) (and create a separate plot for this purpose).
Note: For better resolution, set the data bounds for the x -axis to [0 10].

(b) Repeat part (a) for the following four initial conditions: x0 = [4; 1], x0 = [5; 0.5], x0 = [3; 2],

and x0 = [1.5; 1.5] (use t = 0 : 0.01 : 50 once again). For better resolution, set the data bounds

for the x -axis to [0 25] in both cases.

(c) Use the solutions obtained in parts (a) and (b) to construct a phase plot for this system (I

suggest you use the following data bounds: [−3 6] for the x -axis and [−3 4] for the y-axis).

Based on this plot, how would you describe the geometrical object to which the solutions are

attracted? What is its dimension?

(d) In your opinion, what would be the most important difference between the phase plot

obtained in part (c), and the ones you obtained in Problems 1 and 2? Explain.

Problem 4. In this problem, we will examine a time varying nonlinear system of the form

ẋ1 = x2

ẋ2 = (1− x21)x2 − x1 + a cos bt
where a and b are parameters.

(a) Set a = 0 and b = 2, and solve the equation numerically for the following three initial

conditions: x0 = [1; 1], x0 = [−1.5; 3.5] and x0 = [−2.5;−2.5] (using t = 0 : 0.01 : 100). Plot the
three solutions for x1(t) on a single diagram, and use this diagram to determine what happens to

x1(t) when t→∞. Repeat this exercise for x2(t) (and create a separate plot for this purpose).
Note: For better resolution, set the data bounds for the x -axis to [0 25].

(b) Use the solutions obtained in part (a) to construct a phase plot for this system. Based on

this plot, how would you describe the geometrical object to which the solutions are attracted?

What is its dimension?

(c) The attractor obtained in part (b) is clearly different from the ones obtained in Problems

1-3. How would you correlate this difference with the behavior of solutions x1(t) and x2(t) when

t→∞? Explain.

Problem 5. Let us once again consider the system given in Problem 4, this time with a = 0.5

and b = 2.

(a) Solve the equation numerically for the same three initial conditions as in Problem 4, using

t = 0 : 0.05 : 1, 000. Plot the three solutions for x1(t) on a single diagram, and use this diagram

to determine what happens to x1(t) when t → ∞. Repeat this exercise for x2(t) (and create a
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separate plot for this purpose). How do your solutions differ from the ones obtained in Problem

4? Note: For better resolution, set the data bounds for the x -axis to [0 25].

(b) Use the solutions obtained in part (a) to construct a phase plot for this system. Based on

this plot, how would you describe the geometrical object to which the solutions are attracted?

What is its dimension?

(c) Compare this attractor to the one obtained in Problem 4. How would you explain the

differences between them? In answering this question, consider how the solutions of these two

systems behave when t→∞.

Problem 6. In this problem, we will examine a third order nonlinear system of the form

ẋ1 = −x2 − x3
ẋ2 = x1 + 0.2x2

ẋ3 = x1x3 − 5.7x3 + 0.2

(a) Solve the equations numerically for the following three initial conditions: x0 = [0; 0; 0],

x0 = [−12;−10;−1] and x0 = [−2;−6; 0] (using t = 0 : 0.01 : 1, 000). Plot the three solutions
for x1(t) on a single diagram, and use this diagram to determine what happens to x1(t) when

t → ∞. Repeat this exercise for x2(t) and x3(t) (create a separate plot for each variable). Do
you see any sort of regularity emerging over time, or do these solutions look random?

Note: You should make your conclusions based on the entire simulation interval [0 1, 000].

However, in the plots that you submit, set the data bounds for the x -axis to [0 50] - they will

look nicer.

(b) In order to establish whether or not the solutions obtained in part (a) exhibit any sort

of regularity (such as long-term periodicity, for example) it is helpful to look at the differences

between these functions. To keep things simple, in the following, we will focus on the solutions

that correspond to x0 = [0; 0; 0] and x0 = [−12;−10;−1] (we will denote their components
by [x1;x2;x3] and [y1; y2; y3], respectively). Plot the differences x1 − y1, x2 − y2, and x3 − y3
as functions of time on three separate graphs, and use this information to determine whether

the two solutions have any common features when t → ∞. If they do, this would suggest the
existence of some kind of “hidden” pattern.

(c) To further investigate the dynamic behavior of this system, construct a phase plot using

the solutions obtained in part (a). Since you are working with a three dimensional system, it

will be helpful to use the command

param3d(z1,z2,z3)

where [z1; z2; z3] corresponds to the solution with initial condition x0 = [−2;−6; 0]. This com-
mand produces a 3-dimensional phase plot, which you can view from different angles. To adjust

the viewing angle, click on Axes Properties, and select the Viewpoint option. For the best view,

replace angle 35 with 135.

(d) For a somewhat different view of the phase plot, it is useful to examine its projection onto

the x1 − x2 plane. You can do this using the following command:
plot(x1,x2,0,0,‘.’,y1,y2,-12,-10,‘.’,z1,z2,-2,-6,‘.’)

Based on this plot and the one obtained in part (c), would you say that the system has an

attractor? If so, how would you describe its geometrical properties?


