
1

Demo 1: Introduction to Nonlinear Systems and a
Brief Scilab Tutorial

In this demo you will be introduced to some basic concepts and terminology that are com-

monly encountered in the analysis of nonlinear systems. You will also learn how to use Scilab,

with particular emphasis on commands related to solving differential equations and plotting the

solutions.

Some Basic Concepts

Nonlinear systems are typically described using one or more differential equations, whose

variables are referred to as states. What these variables actually represent varies from one

system to another. In electric circuits, the states could be the capacitor voltages and inductor

currents; in mechanical models, it could be positions and velocities, and so on. The important

thing to remember is that in all these cases, the state variables constitute the minimal amount

of information that is needed to fully describe the system.

The following pair of differential equations describes a typical nonlinear dynamic system

ẋ1 = −3x21 + 2x1x2 + x22
ẋ2 = sinx2 + x1x2

in which x1 and x2 represent the states, and

ẋ1 =
dx1

dt
and ẋ2 =

dx2

dt

denote their derivatives over time. This system is nonlinear because the functions on the right

hand side involve squares and products of the state variables, as well as a sinusoidal function of

x2. An example of a linear system would be

ẋ1 = −3x1 + 2x2
ẋ2 = x1 − 4x2

where all the terms on the right hand side involve only x1 and x2 (possibly multiplied by con-

stants).

In analyzing dynamic systems (both linear and nonlinear), we are particularly interested in

finding constant solutions to the equations that describe them. Such solutions are known as the

system equilibria, and they can be computed by solving a system of algebraic equations which

are obtained by setting all the derivatives to zero (since the derivative of a constant solution

necessarily equals 0). In the example shown above, the equilibria could be found by solving the

system
0 = −3x21 + 2x1x2 + x22
0 = sinx2 + x1x2



2

To illustrate some of the key properties of system equilibria, in the following we will focus our

attention on the simple first order model

ẋ = x2 + x+ p

where p represents a parameter. This sort of description is quite common in practice, since many

physical systems have parameters that can take on a range of different values. The equilibria of

this system can be found by solving the quadratic equation

0 = x2 + x+ p

In this case we actually have an analytic solution of the form

x1,2 =
−1±√1− 4p

2

but this a rather unusual situation. In most cases, the algebraic equations need to be solved

numerically, and this can often be quite challenging.

The system that we are currently considering has two important features that are typical of

many nonlinear models:

1. It has multiple equilibria.

2. For some values of parameter p, there is no equilibrium at all (this is the case when p > 1/4,

since equilibria cannot be complex numbers).

Contrast this to the linear system shown below

ẋ1 = −x1 + 2x2
ẋ2 = 3x1 − 4x2 − p

whose equilibria can be found by solving

0 = −x1 + 2x2
0 = 3x1 − 4x2 − p

or equivalently ∙ −1 2

3 −4
¸ ∙

x1
x2

¸
=

∙
0

p

¸
It is not difficult to see that such a system has a unique solution

xe =

∙
p

p/2

¸
for any choice of p. Note that this solution is always

xe =

∙
0

0

¸
when parameter p is set to zero (in such cases, we say that the system has an equilibrium at the

origin).



3

An important characteristic of any system equilibrium is its stability. A stable equilibrium

acts like a sort of “magnet” which attracts a range of solutions that start from different initial

conditions. For that reason, it is commonly referred to as an attractor. An unstable equilibrium,

on the other hand, repels solutions that originate in its vicinity (and is therefore referred to as

a repeller). There are a number of analytic techniques for determining whether an equilibrium

is stable or unstable. We will not examine these techniques in any detail, and will instead draw

our conclusions from numerical simulations (which will be performed using Scilab).

A Brief Guide to Scilab

Our principal objective in the following will be to learn how to solve a system of differential

equations numerically. For that purpose, we will initially focus on the system

ẋ = x2 + x+ p

which we already considered in the previous section. The Scilab differential equation solver

requires that you describe the right hand side of the equation in a separate file. In order to do

that, click on the second icon from the left, which will open a new file in SciNotes. Type

function y = dem1(t, x, p)

y = xˆ2+x+p;

endfunction

Then click on Execute, and choose Save and Execute from the drop down menu. This will save

your file as dem1.sci, and will also make it available to Scilab for the purpose of solving the

differential equation.

The function that you created returns

y = x2 + x+ p

given specific values for t, x and p (which represent the input variables). Although time t doesn’t

appear explicitly in this expression, we included it because Scilab’s general format is designed

to accommodate time varying equations as well. An example of such an equation would be

ẋ = x3 + x2 + p+ cos 2t

where time shows up in the cosine term.

In order to solve our differential equation, we need to specify an initial condition x0, an initial

time t0 and a value for parameter p. We also need to indicate the points in which you want the

solution computed. If we choose x0 = −1, t0 = 0 and p = −2, and decide to solve the equation
on the interval 0 ≤ t ≤ 5 with points that are separated by ∆t = 0.01, you should type the

following four commands in the workspace:

x0 = -1;

t0 = 0;

p = -2;

t = 0:0.01:5;



4

Placing the semicolon after each command is a good practice in general, since it prevents the

program from displaying unnecessary intermediate results on the screen.

You are now ready to use Scilab’s differential equation solver. You can do that by typing the

command

y=ode(x0,t0,t,list(dem1,p));

The term dem1 in this expression indicates the name of the .sci file that describes the right hand

side of your equation, and p refers to the parameter that appears in this description. You can

plot the solution that you obtained using the command

plot(t, y)

which opens a new graphics window and displays the curve that was computed numerically.

Plotting Options

To see what plotting options are available in Scilab, click on Edit in the graphics window, and

then select Axes Properties from the pull down menu. This will open the Axes Editor, which

allows you to modify the way your plot is displayed. Suppose, for example, that you would like

a more detailed view of your solution on the interval 0 ≤ t ≤ 1. To do that, change the data
bounds in the Axis Options from [0 5] to [0 1]. When you click on your original plot, this will

produce the graph shown in Figure 1.

You can label the x-axis by adding the appropriate text in the Label Options (the text should

be inserted between the two quotation marks). You can also create a grid, by changing the grid

color in the Axis Options from -1 to 1. Note that these kinds of changes can be applied to the

y-axis as well - all you need to do is select Y from the Object Properties menu, and repeat the

steps described above.

Plots created in Scilab can be exported in a number of ways. To create a pdf or encapsulated

post script (.eps) copy, click on the File option in the graphics window, select Vectorial Export,

and then choose the appropriate file format. If you prefer to create a jpeg version of the file,

select Export To, and then pick this format. The resolution of the graphics is somewhat reduced

when you convert the plot to a jpeg file, but this may be necessary in cases when the number of

data point is large.

Equilibria and Stability

In this section, we will be interested in analyzing how system

ẋ = x2 + x+ p

behaves when it starts from different initial conditions (we will continue to use p = −2 in these
calculations). In order to do that, we will consider x0 = 0.99, x0 = 0, x0 = −1 and x0 = −4,
and type in the following set of commands:

x0 = 0.99;

y1 = ode(x0,t0,t,list(dem1,p));

x0=0;

y2=ode(x0,t0,t,list(dem1,p));

x0=-1;

y3=ode(x0,t0,t,list(dem1,p));



5

x0=-4;

y4=ode(x0,t0,t,list(dem1,p));

In order to plot all four functions on the same graph, type

plot(t,y1,t,y2,t,y3,t,y4)

You will obtain a graph like the one shown in Figure 2, which suggests that equilibrium xe = −2
is an attractor. To get a numerical value for this equilibrium without having to read it from the

graph, type in

size(y1)

This will give you the number of rows and columns in y1 (in this case, y1 has 1 row and 501

columns). The number of columns tells us that y1 has 501 elements, which correspond to values

of x(t) evaluated at t = 0, 0.01, 0.02, . . . , 4.99, 5.00. The last of these values represents a good

approximation for the attractor to which this solution has converged. You can verify this by

typing in

y1(501)

which produces −1.9999995. This value is obviously very close to the exact equilibrium value

(which is xe = −2).
It is interesting to note that the graph in Fig. 2 tells us nothing at all about the other

equilibrium - we know that there is one at xe = 1, but this value was computed analytically. To

see why this equilibrium is “invisible”, let us solve our system for initial conditions x0 = 0.99,

x0 = 1, and x0 = 1.00001 on the interval 0 ≤ t ≤ 4. The following sequence of commands

yield the three solutions that we are interested in (we will denote them z1, z2 and z3, in order

to distinguish them from our previous solutions):

x0=0.99;

z1=ode(x0,t0,t,list(dem1,p));

x0=1;

z2=ode(x0,t0,t,list(dem1,p));

x0=1.00001;

z3=ode(x0,t0,t,list(dem1,p));

The command

plot(t,z1,t,z2,t,z3)

produces the graph shown in Fig. 3, which indicates that xe = 1 is an unstable equilibrium. We

can obtain this solution only if we set x0 = 1 - any deviation from this value will lead to a different

attractor, or to divergence. This is easily verified by observing that the solution originating at

x0 = 0.99 is attracted to x
e = −2, while the other one appears to increase unboundedly. To get

a better idea of what happens to the solution that corresponds to x0 = 1.00001, it is helpful to

expand our simulation interval from 0 ≤ t ≤ 4 to 0 ≤ t ≤ 4.2. The graph in Fig. 4 shows that
this solution “blows up” very rapidly.

What can we conclude from this analysis? Perhaps the most important insight is that nu-

merical simulation can reveal the stable equilibria of the system, but not the unstable ones. It

can also give us an idea of the range of initial conditions that converge to a particular stable



6

equilibrium (the so-called region of attraction). In our example, it would seem that solutions

with x0 < 1 are attracted to x
e = −2, while those with x0 > 1 diverge to infinity. This, however,

is only a rough estimate of the region of attraction - a more precise evaluation would require

solving the equation for a much larger set of initial conditions.



AZecevic
Typewritten Text
Figure 1

AZecevic
Typewritten Text



AZecevic
Typewritten Text
Figure 2

AZecevic
Typewritten Text



AZecevic
Typewritten Text
Figure 3

AZecevic
Typewritten Text

AZecevic
Typewritten Text



AZecevic
Typewritten Text
Figure 4

AZecevic
Typewritten Text

AZecevic
Typewritten Text




