
1

Demo 3: Simulation of Discrete Systems

In this demo we will examine systems whose dynamics are known only on a discrete set

of points. Such systems are usually described by one of more difference equations, where the

solution takes the form of a sequence (as opposed to a continuous function of time). A typical

example of a linear first order difference equation would be

x(k + 1) = 0.7x(k) + p

where p represents a parameter. Given an initial condition x(0) and a value for p, the sequence

{x(0), x(1), . . . , x(n)} can be computed recursively.
As in the case of continuous systems, here, too, we will be interested in finding constant

solutions which represent the system equilbria. In our example, such a solution would have to

satisfy the equation

xe = 0.7xe + p

which implies that there is a unique equilibrium

xe =
p

0.3

To solve this difference equation in Scilab, we first need to describe the right hand side of the

equation in a file which we will call dem3.sci. The contents of this file are shown below.

function y = dem3(t, x, p)

y=0.7∗x+p;
endfunction

The Scilab solver requires that we specify an initial condition x(0), an initial time k0 and a value

for parameter p. We also need to indicate the range of points for which we want the solution

computed. If we choose x(0) = 1, k0 = 0 and p = 0, and decide to solve the equation for

k = 0, 1, 2, . . . , 30, you should type the following four commands in the workspace:

x0 = 1;

k0 = 0;

p = 0;

kvect = 0:1:30;

You can then invoke Scilab’s difference equation solver with the command

y=ode(“discrete”,x0,k0,kvect,list(dem3,p));

Note that this format is very similar to the one we used for solving differential equations. The

main difference is the term “discrete”, which specifies the nature of the equations.



2

When plotting the solution, it is convenient to label the computed points as little circles, and

to have an additional curve that connects these points (this curve is not necessary, but it often

gives us a better sense of how the solution evolves). Such a plot can be obtained using the

following command

plot(kvect,y,‘.’,kvect,y)

where the terms kvect,y,‘.’ produce the points, and the last two terms create the curve that

connects them. The resulting graph is shown in Fig 1.

In analyzing discrete systems, it is often useful to represent x(k + 1) as a function of x(k).

Observing that

y =
£
x(0) x(1) x(2) . . . x(29) x(30)

¤
is a vector of dimension 1× 31, the commands

w1=y(1:30);

w2=y(2:31);

produce a pair of vectors

w1 =
£
x(0) x(1) x(2) . . . x(28) x(29)

¤
and

w2 =
£
x(1) x(2) x(3) . . . x(29) x(30)

¤
Typing

plot(w1,w2,‘.’)

will create pairs (x(0), x(1)), (x(1), x(2)), ... , (x(29), x(30)), which is exactly what we need to

display x(k + 1) as a function of x(k). The graph obtained in this way is shown in Fig. 2.

To see how the solution changes when we set p = 2, type the following sequence of commands:

x0 = 1;

k0 = 0;

p = 2;

kvect = 0:1:30;

and then enter

y=ode(“discrete”,x0,k0,kvect,list(dem3,p));

as before. The corresponding plot obtained using

plot(kvect,y,‘.’,kvect,y)

is shown in Fig. 3, which indicates that the solution converges to equilibrium xe = 6.667. Note

that this equilibrium is different from the one shown in Fig. 1, due to the fact that p has changed.



AZecevic
Typewritten Text
Figure 1

AZecevic
Typewritten Text



AZecevic
Typewritten Text
Figure 2

AZecevic
Typewritten Text



AZecevic
Typewritten Text
Figure 3

AZecevic
Typewritten Text

AZecevic
Typewritten Text

AZecevic
Typewritten Text




