
1

Electric Circuits I
Aleksandar I. Zečevíc

Dept. of Electrical Engineering
Santa Clara University

Project 2: Basic Filter Design

The circuit below is driven by a sinusoidal voltage source Vg(t) = cosωt.
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Fig. 1. A simple low-pass filter.

Problem 1. Derive an expression for the amplitude of the output voltage as a function of R1, 
R2, C and ω (in the following we will refer to this amplitude as A(ω)).

Problem 2. Based on the results of Problem 1, design a low-pass filter that satisfies the 
following requirements:

1) For ω = 0 (which corresponds to DC), the amplitude must be A(0) = 1.

2) For ω = 1, 000 rad/s, the amplitude must be A(1, 000) = 0.7.

3) Your element values must be physically realistic.

Problem 3. Write an m-file that solves the circuit in Fig. 1 for different frequencies. Use it
to plot 20 logA(ω) for the values chosen in Problem 2, and verify that the design requirements
are satisfied.

Problem 4. Repeat Problem 1 for the circuit shown in Fig. 2.



2

−

+
±

C2

Vg

R1

C1
R2

RL 

Fig. 2. An alternative circuit for filter design.

Problem 5. Choose physically realistic values for R1, R2, C1 and C2 so that A(ω) = 10 for
all values of ω (this would correspond to an all-pass filter).

Problem 6. Choose physically realistic values for R1, R2, C1 and C2 so that the following
two requirements are met:

1) For ω = 0 the amplitude must be A(0) = 0.01.

2) For ω = 10, 000 rad/s, the amplitude must be A(10, 000) = 0.9.

What kind of filter is this? Explain.

Problem 7. Write an m-file that solves the circuit in Fig. 2 for different frequencies, and plot
20 logA(ω) for the values chosen in Problems 5 and 6. Use these plots to verify the two designs.

Problem 8. Assemble the circuits in Figs. 1 and 2 with the element values obtained in
Problems 2, 5 and 6. In all three cases measure A(ω) for a range of relevant frequencies, and
use the data to plot 20 logA(ω) (do this in Matlab). Compare the measurements with your
simulation results.
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Project 2: Analysis of Basic Filters
In this section our objective will be to study basic filters and their applications. We begin with the following

simple circuit, in which the source has the form vg(t) = cosωt.
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Fig. 5. A simple RC filter.

Since we would like to use this circuit at different frequencies, it makes sense to leave ω unspecified in our analysis.
Taking the capacitor voltage as the output, we have

~V0 =
1/(jωC)

R+ 1/(jωC)
~Vg =

1

1 + jωRC
(17)

(since ~Vg = 1), and the magnitude and angle of ~V0 can be expressed as

|~V0| ≡ A(ω) = 1p
1 + (ωRC)2

(18)

and

∠~V0 ≡ ϕ(ω) = − tan−1(ωRC) (19)

respectively. The corresponding output voltage in the time domain will have the form

v0(t) = A(ω) cos(ωt+ ϕ(ω)) (20)

It is important to recognize that both the amplitude and the angle of the output voltage (20) depend on the
frequency. To see what this means in practical terms, let us focus on three specific values of ω :

1) For ω = 0 (which corresponds to DC), we have A(0) = 1 and ϕ(0) = 0, and consequently

v0(t) = 1 (21)

2) For ω = ω0 ≡ 1/RC, we have A(ω0) = 1/
√
2 = 0.71 and ϕ(ω0) = −45◦, and consequently

v0(t) = 0.71 cos(ω0t− 45◦) (22)

3) For ω = 20ω0, we have A(20ω0) = 0.05 and ϕ(20ω0) = −87◦, and consequently
v0(t) = 0.05 cos(20ω0t− 87◦) (23)

Since the amplitude of the output voltage becomes very small when ω À ω0, we refer to this type of circuit as a
low-pass filter. The frequency ω0 at which the amplitude of v0(t) is reduced to ≈ 70% of its initial value is an
important characteristic of the filter, and is known as the corner frequency.
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For a more detailed analysis of this circuit, it is useful to obtain a plot of the function A(ω) given in (18).
Such a plot is shown in Fig. 6, for the case when R = 1KΩ and C = 1µF (the Matlab program that was used
to obtain it is provided in in Appendix 2).
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Fig. 6. Frequency response for the circuit in Fig. 5.

Several comments need to be made regarding this plot.

Remark 1. It is customary to plot 20 logA(ω) rather than A(ω) itself.

Remark 2. The x-axis is logarithmic, since the frequency ranges from 1 rad/s to 106 rad/s.

Remark 3. The corner frequency for this particular low-pass filter is ω0 = 1/RC = 1, 000 rad/s.

A Typical Application of Filters

Suppose you are receiving a signal which has an undesirable high frequency component (we refer to such a
component as “interference”). This type of situation occurs virtually every time information is transmitted over
a distance. A typical example of such a signal would be something like

vin(t) = cos 10t+ 0.2 cos 300t (24)

which corresponds to the function shown in Fig. 7.
The simple low-pass circuit in Fig. 5 can be used to “clean up” such a signal. To see this, let us pick R and

C so that ω0 = 1/RC = 20 rad/s, and use superposition to separate the responses. For the two components, the
expressions derived in (18) and (19) produce

A(10) = 0.894 and ϕ(10) = −26◦ (25)

and

A(300) = 0.013 and ϕ(300) = −86◦, (26)

respectively. Combining the two responses, we obtain

v0(t) = 0.894 cos(10t− 26◦) + 0.013 cos(300t− 86◦) (27)

which is graphically represented in Fig. 8.
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Fig. 7. A noisy sinusoid.
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Fig. 8. The sinusoid after filtering.

This plot clearly shows that the undesirable component has now been almost eliminated (at the expense of a
10% decrease in the amplitude of the output voltage).

The Design and Simulation of Active Filters

Although the circuit considered in Fig. 5 is a legitimate low-pass filter, it can satisfy only very basic design
requirements. For more sophisticated applications, it is necessary to use so-called active circuits, with one or
more operational amplifiers. A class of simple active filters corresponds to the circuit in Fig. 9.
This generic circuit can produce several different types of filters, depending on how we choose impedances Z1

and Z2. To analyze it, let us first observe that the KCL equation at the inverting terminal of the op amp has
the form

−~IZ1 + ~IZ2 = 0 (28)
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Fig. 9. A generic active filter.

Recalling that this input is virtually grounded, we have

~IZ1 =
~Vg
Z1

and ~IZ2 = −
~V0
Z2

(29)

and therefore

~V0 = −Z2
Z1
~Vg. (30)

As an illustration of what this circuit can do, let us consider the scenario shown in Fig. 10, which corresponds
to Z1 = R1 + 1/jωC and Z2 = R2.
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Fig. 10. A special case of the active filter circuit.

In this case (30) becomes

~V0 = − R2
R1 + 1/jωC

~Vg = − jωCR2
1 + jωCR1

(31)

and the amplitude of the output voltage is obtained as

A(ω) =
ωCR2p

1 + (ωCR1)2
(32)

This function is shown in Fig. 11, for the case when R1 = R2 = 1KΩ and C = 1µF (the Matlab program used
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to obtain it is provided in Appendix 3).
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Fig. 11. The frequency response of the circuit in Fig. 10.

The plot suggests that the circuit in Fig. 10 is a high-pass filter, which produces meaningful output voltages for
sufficiently high frequencies.
For larger circuits, it is generally very difficult to obtain an explicit expression for A(ω) like the one in (32),

and it is necessary to resort to simulation. To illustrate how this process works, let us once again consider the
circuit in Fig. 10. The KCL equations for this circuit have the form

1) ~Ig + ~IR1 = 0 ⇒ ~V1 = ~Vg

2) −~IR1 + ~IC = 0
3) −~IC + ~IR2 = 0
4) −~IR1 + ~Ix + ~IRL = 0 ⇒ ~V3 = 0

~IR1 = (~V1 − ~V2)/R1
~IR2 = (~V3 − ~V4)/R2
~IRL = ~V4/RL

~IC = jωC(~V2 − ~V3)
~Ig = ?

~Ix = ?

(33)

It is not difficult to see that these equations can be rewritten in matrix form as


1 0 0 0

−1/R1 (1/R1 + jωC) −jωC 0
0 −jωC (1/R2 + jωC) −1/R2
0 0 1 0



~V1
~V2
~V3
~V4

 =

~Vg
0
0
0

 (34)

Since ω is a variable, it is useful to further rewrite (34) as

(G1 + jωG2)~V = b (35)

where

G1 =


1 0 0 0

−1/R1 1/R1 0 0
0 0 1/R2 −1/R2
0 0 1 0

 (36)
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and

G2 =


0 0 0 0
0 C −C 0
0 −C C 0
0 0 0 0

 (37)

are fixed matrices, ~V is the vector of unknown voltages, and

b =


1
0
0
0

 (38)

(note again that ~Vg = 1 for all problems of this type).
The Matlab function in Appendix 4 can be used to simulate the frequency response of this circuit, based on

repeated solutions of equation (35) for different values of ω. The frequency response obtained in this way is
identical to the one shown in Fig. 11.





Appendix 3 

function F=freqresp2(Rl ,R2,C,w) 

pl =(w."2)*(Rl "2)*(C"2); 
% The command w."2 squares each element ofw separately. 

p2=ones(l ,length(w)); 
% p2 is a ro w of ones, whose size matches w. 

den=sqrt(p 1 +p2); 
% Each element of den represents the denominator at a 
% different frequency. 

num=w*C*R2; 
% In this case, the numerator is a function of the frequency. 

A=num./den; 
% The command .I divides each element of vector num by the 
% corresponding element of vector den. As a result, the elements 
% of A represent the amplitude at different frequencies. 

F=20*log10(A); 
% This is necessary in order to represent the amplitude in decibels. 






