Project 3 Tutorial

Cellular Automata

The dynamic behavior of a cellular automaton can be described by a truth table
of the form

zi—1(k) wi(k) @i (k) | zi(k+1)
0 0 0 o)
0 0 1 aq
0 1 0 Qo
0 1 1 Qa3
1 0 0 Qg
1 0 1 Qas
1 1 0 (6733
1 1 1 (04

Table 1. Generic description of a cellular automaton.

where the last column defines the “rule”. Given that there are 28 = 256
possible combinations of coefficients «g — a7, it follows that there are exactly
256 different types of one-dimensional cellular automata. Each of them is
normally indexed by a single number between 0 and 255, which is computed as:

N:a7~27—|—a6'26+a5~25+a4~24+043~23+a2'22+a1~21+a0'20

We can also describe cellular automata by representing the corresponding rule
as a vector
R:[Oéo a1 Qo G3 Q4 O5 Qg a7]

This approach will prove to be convenient for Matlab simulations.

If the automaton consists of L cells, the overall system will have 2% possible
states, each of which corresponds to a different combination of zeros and ones.
Given any such combination

X(k)=[(k) x1(k) ... wp1(k)]

we can use the truth table to compute the next state of the system

X(k+1)=[xo(k+1) a1(k+1) ... zp_1(k+1)]

Note. Since cells 0 and L — 1 have only two neighbors in the row above,
we have to assume that there is a “wrap around” connection between these two
cells (otherwise, we wouldn’t be able to apply the truth table uniformly). This

effectively means that xq(k + 1) is influenced by zr,_1(k), zo(k) and z;(k), and
that z7,_1(k 4+ 1) depends on z1,_o(k), xr—1(k) and zo(k).

A simple way to describe the overall behavior of the automaton is to form a
matrix M whose first column consists all posible states X (k) (in decimal form),
and whose second column represents the states X (k + 1) that succeed them.
The function M = matrixM(R,L) is designed to produce such a matrix for a
given rule R and automaton length L. The following example illustrates how we
can use this matrix to schematically represent all possible limit cycles and their
basins.

Example 1. Suppose that L = 4, and that function M = matrixM(R,L)
produces matrix

0 0
1 3
2 6
3 6
4 12
5 15
6 14
7 12
M= 8 9
9 3
10 15
11 6
12 13
13 7
14 11
15 0

This matrix allows us to start from any of the 16 possible states, and follow
the evolution of the system until it reaches a limit cycle. If we start from state
X (0) = 5, for example, we know that X (1) = 15, since M (5,2) = 15. Similarly,
from the fact that M (15,2) = 0 it follows that X (2) = 0. The first row of matrix
M indicates that the system remains in this state in all subsequent steps, so we
can conclude that state 5 belongs to the basin of limit cycle {0}.

It is usually helpful to aggregate the information contained in matrix M into
a schematic diagram such as the one shown in Fig. 1. From this figure, we can
deduce that the system has three attractive limit cycles:

Limit Cycle 1: {0}, with basin {5, 10, 15}
Limit Cycle 2: {6, 14, 11}, with basin {1, 2, 3, 8, 9}
Limit Cycle 3: {7, 12, 13}, with basin {4}

Figure 1: Limit cycles that correspond to matrix M.

Note. When working with large values of L, it is not very convenient to form

matrix M directly, since its dimensions are 2% x 2. Instead, it is better to use a

software package such as the one available at http: //www.cellularautomatagenerator.com/.
In order to do that, it is necessary to specify the rule schematically, in the man-

ner shown in Fig. 2 (this particular configuration corresponds to Rule 132,

whose binary equivalent is 10000100).

3 planSatuaEESany EESREE

Figure 2: Schematic representation of Rule 132.

Boolean Networks

Consider the simple Boolean network shown in Fig. 3, which has N = 3 and
K = 2. We will assume that the associated functions F;(z(k)) are the ones
indicated in Tables 2-4. Using these three definitions, we can easily describe
how the overall state vector X (k) = [z1(k) x2(k) x3(k)] evolves over time (this
is shown in Table 5).

Figure 3: Boolean network with N =3 and K = 2.

Table 2. Function Fy [z(k)].

Table 4. Function F3[z(k)].

>~
~—
=
no
>
~—
8
w
Sy
~—

xl(k—l—l) J?Q(k—f— 1) $3(]€+ 1)

—= === O OO O~
— R, OO R O O~
— O = O = O = Ol—
_— oo o= OOoOO0o
_— o= OO 0o oo
el N =)

Table 5. Evolution of state X (k).

As in the case of cellular automata, the system dynamics can be described
in compact form using matrix M, whose columns represent overall states X (k)
and X (k+ 1), respectively. It is not difficult to see that Table 5 corresponds to
matrix

NN WO OO

N O Utk W~ O

We can use this matrix to obtain a schematic description of the possible
limit cycles and their basins (such a description is shown in Fig. 4). Note that
only one of these cycles is attractive - the other two are Isles of Eden.

Figure 4: Limit cycles that correspond to matrix M.

For a given N and K, matrix M can be obtained using function
M = BooleanM(R, U, K, N)

where row ¢ of matrix R corresponds to function Fj;, and row ¢ of matrix U
represents the nodes that influence node 7. In this compact format, the Boolean
functions in Tables 2-4 can be represented as

0 0 01
R=|0 0 0 1
0 1 11
and the connectivity of the network in Fig. 3 can be described using matrix

U =

— = N
N W W

For larger values of N, it makes little sense to form matrix M, since the
number of possible states grows as 2V. In such cases, the best we can do is
perform a statistical analysis of the system behavior, using a set of randomly
chosen matrices R and U. For each such pair, we can estimate the number
and length of attractive limit cycles by simulating the system starting from @
different initial states. We may not be able to indentify all the cycles in this
way, but we can get pretty close when @ is large.

Once we have examined a sufficient number of configurations, we can average
the obtained results, and draw some general conclusions about how NK networks
behave. Function

[Avg NUM, Avg L] = BoolStats(N, K, Q)

is designed to perform this type of analysis (in order to reduce the computation,
we usually set Q = 150). In principle, this function can produce the average
number and average length of attractive limit cycles for any choice of N and K.
However, the execution time becomes excessively large for N > 50, so we will
consider only cases where N < 50 and K < 3.

