
Project 3 Tutorial

Cellular Automata

The dynamic behavior of a cellular automaton can be described by a truth table
of the form

xi−1(k) xi(k) xi+1(k) xi(k + 1)
0 0 0 α0

0 0 1 α1

0 1 0 α2

0 1 1 α3

1 0 0 α4

1 0 1 α5

1 1 0 α6

1 1 1 α7

Table 1. Generic description of a cellular automaton.

where the last column defines the “rule”. Given that there are 28 = 256
possible combinations of coefficients α0 − α7, it follows that there are exactly
256 different types of one-dimensional cellular automata. Each of them is
normally indexed by a single number between 0 and 255, which is computed as:

N = α7 · 27 + α6 · 26 + α5 · 25 + α4 · 24 + α3 · 23 + α2 · 22 + α1 · 21 + α0 · 20

We can also describe cellular automata by representing the corresponding rule
as a vector

R =
[
α0 α1 α2 α3 α4 α5 α6 α7

]
This approach will prove to be convenient for Matlab simulations.

If the automaton consists of L cells, the overall system will have 2L possible
states, each of which corresponds to a different combination of zeros and ones.
Given any such combination

X(k) =
[
x0(k) x1(k) . . . xL−1(k)

]
we can use the truth table to compute the next state of the system

X(k + 1) =
[
x0(k + 1) x1(k + 1) . . . xL−1(k + 1)

]
Note. Since cells 0 and L − 1 have only two neighbors in the row above,

we have to assume that there is a “wrap around” connection between these two
cells (otherwise, we wouldn’t be able to apply the truth table uniformly). This

1



effectively means that x0(k+ 1) is influenced by xL−1(k), x0(k) and x1(k), and
that xL−1(k + 1) depends on xL−2(k), xL−1(k) and x0(k).

A simple way to describe the overall behavior of the automaton is to form a
matrix M whose first column consists all posible states X(k) (in decimal form),
and whose second column represents the states X(k + 1) that succeed them.
The function M = matrixM(R,L) is designed to produce such a matrix for a
given rule R and automaton length L. The following example illustrates how we
can use this matrix to schematically represent all possible limit cycles and their
basins.

Example 1. Suppose that L = 4, and that function M = matrixM(R,L)
produces matrix

M =



0 0
1 3
2 6
3 6
4 12
5 15
6 14
7 12
8 9
9 3
10 15
11 6
12 13
13 7
14 11
15 0


This matrix allows us to start from any of the 16 possible states, and follow

the evolution of the system until it reaches a limit cycle. If we start from state
X(0) = 5, for example, we know that X(1) = 15, since M(5, 2) = 15. Similarly,
from the fact that M(15, 2) = 0 it follows that X(2) = 0. The first row of matrix
M indicates that the system remains in this state in all subsequent steps, so we
can conclude that state 5 belongs to the basin of limit cycle {0}.

It is usually helpful to aggregate the information contained in matrix M into
a schematic diagram such as the one shown in Fig. 1. From this figure, we can
deduce that the system has three attractive limit cycles:

Limit Cycle 1: {0}, with basin {5, 10, 15}

Limit Cycle 2: {6, 14, 11}, with basin {1, 2, 3, 8, 9}

Limit Cycle 3: {7, 12, 13}, with basin {4}

2



Figure 1: Limit cycles that correspond to matrix M .

3



Note. When working with large values of L, it is not very convenient to form
matrix M directly, since its dimensions are 2L× 2. Instead, it is better to use a
software package such as the one available at http://www.cellularautomatagenerator.com/.
In order to do that, it is necessary to specify the rule schematically, in the man-
ner shown in Fig. 2 (this particular configuration corresponds to Rule 132,
whose binary equivalent is 10000100).

Figure 2: Schematic representation of Rule 132.

Boolean Networks

Consider the simple Boolean network shown in Fig. 3, which has N = 3 and
K = 2. We will assume that the associated functions Fi(x(k)) are the ones
indicated in Tables 2-4. Using these three definitions, we can easily describe
how the overall state vector X(k) = [x1(k) x2(k) x3(k)] evolves over time (this
is shown in Table 5).

1

2 3

Figure 3: Boolean network with N = 3 and K = 2.

x2(k) x3(k) F1 [x2(k), x3(k)]
0 0 0
0 1 0
1 0 0
1 1 1

Table 2. Function F1 [x(k)].

4



x1(k) x3(k) F2 [x1(k), x3(k)]
0 0 0
0 1 0
1 0 0
1 1 1

Table 3. Function F2 [x(k)].

x1(k) x2(k) F3 [x1(k), x2(k)]
0 0 0
0 1 1
1 0 1
1 1 1

Table 4. Function F3 [x(k)].

x1(k) x2(k) x3(k) x1(k + 1) x2(k + 1) x3(k + 1)
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 1
0 1 1 1 0 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 0 0 1
1 1 1 1 1 1

Table 5. Evolution of state X(k).

As in the case of cellular automata, the system dynamics can be described
in compact form using matrix M , whose columns represent overall states X(k)
and X(k+ 1), respectively. It is not difficult to see that Table 5 corresponds to
matrix

M =



0 0
1 0
2 1
3 5
4 1
5 3
6 1
7 7



5



We can use this matrix to obtain a schematic description of the possible
limit cycles and their basins (such a description is shown in Fig. 4). Note that
only one of these cycles is attractive - the other two are Isles of Eden.

Figure 4: Limit cycles that correspond to matrix M .

For a given N and K, matrix M can be obtained using function

M = BooleanM(R, U, K, N)

where row i of matrix R corresponds to function Fi, and row i of matrix U
represents the nodes that influence node i. In this compact format, the Boolean
functions in Tables 2-4 can be represented as

6



R =

0 0 0 1
0 0 0 1
0 1 1 1


and the connectivity of the network in Fig. 3 can be described using matrix

U =

2 3
1 3
1 2


For larger values of N , it makes little sense to form matrix M , since the

number of possible states grows as 2N . In such cases, the best we can do is
perform a statistical analysis of the system behavior, using a set of randomly
chosen matrices R and U . For each such pair, we can estimate the number
and length of attractive limit cycles by simulating the system starting from Q
different initial states. We may not be able to indentify all the cycles in this
way, but we can get pretty close when Q is large.

Once we have examined a sufficient number of configurations, we can average
the obtained results, and draw some general conclusions about how NK networks
behave. Function

[Avg NUM, Avg L] = BoolStats(N, K, Q)

is designed to perform this type of analysis (in order to reduce the computation,
we usually set Q = 150). In principle, this function can produce the average
number and average length of attractive limit cycles for any choice of N and K.
However, the execution time becomes excessively large for N > 50, so we will
consider only cases where N ≤ 50 and K ≤ 3.

7


