
ELEN 161
A. I. Zecevic

Project 1: Fractals, the Mandelbrot Set and
Julia Sets

Problem 1. In this problem, you are asked to examine how simple
recursive rules can give rise to highly complex patterns, some of which closely
resemble forms that are encountered in nature.

(a) Describe the axiom and the transformation rule for each of the six
recursive schemes shown in Table 1. In all cases, the first F should be inter-
preted as a single vertical line pointing upward.

Axiom Rule Angle

Scheme 1 F - - F - - F F + F - - F + F 60◦

Scheme 2 F + F + F + F F + F - F - FF + F + F - F 90◦

Scheme 3 F + F + F + F FF [+ F + F + F] F 90◦

Scheme 4 F F [+ F - F - F] F [- F - F - F] F 90◦

Scheme 5 F F [+ F] F [- F] F 25◦

Scheme 6 F FF - [- F + F + F] + [+ F - F - F] 25◦

Table 1. Axioms and rules for Schemes 1 - 6.

(b) Use the software package described in the tutorial to plot:

(i) The third iteration for Schemes 1 and 2

(ii) The third and fifth iterations for Schemes 3, 4 and 5

(iii) The third and fourth iterations for Scheme 6

(c) How are the first four patterns different from the last two, and what
can you conclude about biological patterns of growth in nature based on your
simulation results? Explain.

1

Problem 2. The Mandelbrot set represents the set of complex numbers
c for which the sequence

z(n + 1) = z2(n) + c (1)

is bounded when z(0) = 0. The structure of this set is remarkably complex,
and the resulting fractal is considered to be one of the most aesthetically
pleasing objects in all of mathematics.

(a) Compute this set using function mandelbrot.m with the following
parameters:

(i) Grid boundaries: Xmin = −2; Xmax = 0.5; Ymin = −1.25;
Ymax = 1.25

(ii) Number of iterations: K = 100

(iii) Convergence criterion: |z(n)| ≤ 2 for all n ≤ K

(iv) Spacing between points on the grid: s = 1/2, 500

Note. This choice of s will give you a 6, 250× 6, 250 grid, with roughly
39 million points. You will actually need that level of detail to obtain a
reasonably accurate representation of the Mandelbrot set. To improve the
visual appearance of this plot, use the “axis square” command in Matlab.

(b) Zoom into at least two “interesting” areas of the plot obtained in part
(a) by changing parameters Xmin, Xmax, Ymin and Ymax. Keep K = 100, and
choose s so that you end up with a 5, 000 × 5, 000 grid (which amounts to
25 million points). The kinds of images that you might get are illustrated in
Figs. 1 and 2 (which, of course, are just the “tip of the iceberg”). Feel free
to explore further.

Problem 3. Filled Julia sets are obtained from the same equation as the
Mandelbrot set. The difference between the two is that parameter c is fixed
in this case, and what is varied is the initial condition z(0). Once again,
the objective is to identify a set of points for which sequence z(n) remains
bounded.

(a) Modify function mandelbrot.m to produce Julia sets for different
choices of c.

(b) Vary parameter c in such a way that its real and imaginary parts
satisfy −1 ≤ Re(c) ≤ 1 and 0 ≤ Im(c) ≤ 1, respectively. Identify at least
two Julia sets that you find aesthetically pleasing, and plot them.

2

Figure 1: Mandelbrot zoom 1

Figure 2: Mandelbrot zoom 2

3

Note. Make sure that you record the corresponding value of c for each
plot in Problem 3(b). You can use the following parameters for your simula-
tion:

(i) Grid boundaries: Xmin = −2; Xmax = 2; Ymin = −2; Ymax = 2

(ii) Number of iterations: K = 100

(iii) Convergence criterion: |z(n)| ≤ 2 for all n ≤ K

(iv) Spacing between points on the grid: s = 1/2, 000

Figures 3, 4 and 5 illustrate the kinds of forms that you might obtain.

Problem 4. The notion of a Julia set is not limited to equation (1), and
can be extended to general sequences of the form

z(n + 1) = F [z(n)] + c (2)

where function F (z) contains higher powers of z and possibly sines and
cosines as well. The procedure in this case is essentially the same as be-
fore - you need to fix a value for c and identify all initial conditions z(0) for
which |z(n)| ≤ R for all n ≤ K. The only real difference is that R needn’t
be 2 any more, and depends on the choice of function F .

Figure 3: Julia set, variant 1

4

Figure 4: Julia set, variant 2

Figure 5: Julia set, variant 3

5

The set of points obtained in this way can produce some very interest-
ing geometric forms if certain simple modifications are made to the conver-
gence criterion. It is interesting to note that this property was discovered
accidentally, and was the result of a programming error. Instead of assum-
ing that system (2) diverges when |z(n)| > R, the altered code included a
second (and completely unnecessary) condition, which required that either
|Re[z(n)]| < R or | Im[z(n)]| < R. Both criteria needed to be met before the
sequence could be classified as “unbounded”.

Although adding this second requirement has no mathematical justifica-
tion, the resulting images are remarkably interesting. They do not represent
actual Julia sets since they contain some points for which the sequence di-
verges, but they bear a striking resemblance to living organisms (which is
completely unexpected).

(a) Modify the m-file that you developed in Problem 3 to allow for general
sequences like the one in equation (2), and include the “erroneous” divergence
criterion described above.

(b) Use the m-file obtained in part (a) to compute “quasi-Julia sets” for
the three systems shown below:

System 1
z(n + 1) = z2(n) + z6(n) + c (3)

System 2
z(n + 1) = z2(n) + sin z(n) + c (4)

System 3
z(n + 1) = z3(n) + c (5)

In all three cases, you can use the following parameters in your simulation:

(i) Grid boundaries: Xmin = −2; Xmax = 2; Ymin = −2; Ymax = 2

(ii) Spacing between points on the grid: s = 1/1, 000

(iii) Convergence criterion: |z(n)| ≤ 10 for all n ≤ K

Note that the values for K are not uniform in this problem, and should
be set to K = 5 for Systems 1 and 2, and K = 10 for System 3. The choice
of parameter c is up to you, the only restriction being that 0 ≤ c ≤ 1. Your
task will be to identify values that produce aesthetically pleasing “biological”

6

forms for each of the three cases. To give you an idea of what you should be
looking for, some possible scenarios are shown in Figs 6, 7 and 8.

(c) In order to compare the sets obtained in part (b) with “regular” Julia
sets, remove the unnecessary divergence condition from the m-file that you
created in part (a). Plot the resulting Julia sets for the values of c that you
chose in part (b), using the same parameters. What you will find is that
these plots aren’t nearly as interesting as the previous ones (Figs. 9, 10 and
11 illustrate what I mean by that).

7

Figure 6: “Biological” form 1

Figure 7: “Biological” form 2

8

Figure 8: “Biological” form 3

Figure 9: Julia set that corresponds to Fig. 6.

9

Figure 10: Julia set that corresponds to Fig. 7.

Figure 11: Julia set that corresponds to Fig. 8.

10

